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Abstract—A mathematical model of accelerating a body along the inclined and horizontal rails under 
the tension force of the prestretched shock cord has been developed and numerically realized. 
The nonlinearity of load-strain dependence is taken into account. The shock cord is modeled as an 
absolutely flexible deformable thread. The results of numerical study are compared with the 
experiment data. 
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At  present, the systems, in which use is made of the energy of stretched rubber shock cords (e.g., for the 
dynamic regime of testing the aircraft equipment units [1] or in launchers for acceleration of unmanned 
aerial vehicles [2]), find their application in aircraft engineering . For this reason, of current interest now is 
the modeling of systems equipped with the rubber shock cords and proper account of their flexibility and 
elasticity. Large deformability of the materials being used as well as the wave processes in them [1] must be 
taken into account.  

A variety of problems on the mathematical modeling of flexible linear elements with proper account 
for their strains can be successfully solved by using the thread motion equations [3]. 

In this paper, we present the mathematical model of moving a bogie along the inclined and horizontal rails 
under the action of tensile force in the pre-stretched shock absorber made from the rubber cord folded in 
several times. In making calculations, use is made of the static characteristic of shock absorber unloading that 
is obtained on the horizontal test bench (the Scientific-Research Institute of Aeroelastic Systems, Feodosiya). 
The data of numerical experiments are compared with those of field tests and we note their fair agreement. 

PROBLEM STATEMENT AND MATHEMATICAL MODEL  

Figure 1 presents the layout of the test bench framework AB (in the general case, inclined and 
horizontal one at α = 0) and the bogie sliding along it. The bogie moves under the action of tensile force 
of the shock absorber OC, one end of which is fixed to the bogie and the other one is fixed at the point C. 
At the initial instant of time, the bogie is at the point B and the shock absorber is stretched (BC > la, where 
la is the shock absorber length in the unstrained state). When the bogie moves to the point A, the length of 
shock absorber is reduced (AC < BC). In the process of bogie motion, it undergoes the gravity force Gg, 
standard pressure force N, friction force Ffr, drag Q, and force of the shock absorber tension T. Under 
unloading, the shock absorber is deformed due to displacement of its end O and (in the general case), due 
to the action of gravity forces. In this case, interaction between the shock absorber and the test bench 
surface is not taken into account. The shape of shock absorber is assumed to be rectilinear at the initial 
moment and in the particular case of motion. 

The problem is to determine the bogie–shock absorber system motion.  
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Fig. 1. 

Let as assume that the shock absorber takes up only the stretching forces. We will simulate it as 
a stretchable ponderable ideally flexible thread.  

Let us write the equations of the thread motion in the gravity force field in the projections onto the 
coordinate axes Bxy (Fig. 1): 
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where ρa is the linear density of the thread; g is the acceleration of gravity;α  is the angle of framework 
inclination to the horizon; vx, vy are the components of the thread motion velocity along the coordinate 
axes Bxy; s is the Lagrange coordinate of the thread point counted from the point O; T is the thread 
tension; ε is the relative thread elongation. 

The equation of the bogie motion can be written in the following form: 
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where V b  is the bogie velocity; δ is the angle between the tangent to the thread at the point O and the 

framework (Fig. 1); cb is the coefficient of the bogie resistance force; fb is the characteristic area of the 
bogie, and ρ is the air density. 

At bogie sliding along the framework, the friction force will be 

 Ffr =μN,     (3) 

where μ is the coefficient of sliding friction. 
Taking into account that the bogie moves only towards the Bx axis, we shall find  

 N = Gbcosα + Tsinδ.    (4) 
The differential equations of motion (1), (2) are supplemented with the following kinematical relations 

for the thread: 
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kinematical relation for the bogie: 
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as well as the geometric and physical relations for the thread: 
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Initial conditions can be represented in the form: 
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Boundary conditions can be represented as: 

 ( ,0) Tx t x= ;   ( ,0) 0y t = ;           ( ), a cx t l x= ;   ( ), a cy t l y= ,  (10) 

where xC, yC  are the point C coordinates (Fig. 1). 
Then, we will impose the following additional restriction:  

 T(t, s)≥  0. 

In order to solve the system of equations (1), (2), (5), and (6), we will use the finite-difference method. 
Let us introduce into consideration the discrete domain si = iΔs, tj = jΔt (i = 1, …, n;  j = 1,2, …; Δs = la/n 
is the length of unstrained element). 

By using the central differences to approximate the derivatives, we can write the system of equations 
(1), (2), (5), (6) in the finite difference form according to the explicit scheme: 
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The length of the strained ith element will then be: 
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The relative elongation can be expressed as: 

 
if 1,,

if 1.0

jj
j ii
i j

i

l sl s

l s

⎧ Δ ≥Δ
ε = ⎨

Δ <⎩
    (14) 

The tension is presented as 

 ( )j j
i iT T= ε .   (15) 

The coordinates of points i at the initial instant of time will be the following: 
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Since the differential scheme being used is explicit, in the numerical solution there may appear the 
high-frequency oscillations in magnitude values. In order to suppress these oscillations, use is made of 
the direct correction of velocities for nodal points of computational grid [4] by the formulas: 
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The program for modeling the bogie motion along the test bench framework under the action of tensile 
force of rubber shock absorber was formulated in accordance with the mathematical model presented.  
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TEST PROGRAM DEVELOPMENT 

The program was verified by test calculations. 
The value of maximal slackness in the thread stretched between two fixed supports (distance between 

them is equal to a) under the action of gravity force is compared with the analytical solution [5] by the 
following formula: 
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γ is the loading parameter that can be determined by the formula 

 ( ) ( )
2 2 224ag a Eγ = ρ . 

Numerical calculations are correlated with the analytical solution.  
The shock absorber oscillation frequency is compared with the string oscillation frequency in the 

eigentone [6]: 
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where m is the mass of string. 
The initial disturbance was assigned in accordance with the node velocity in the string middle 

iV = 20 m/s ( / 2,i n= 50n = ) towards its normal. The data of numerical calculations differ from those 

obtained by formula (19) by no more than 2 %. 

Based on test calculations, the coefficient β  was taken to be 0.015 2sΔ . The integration step tΔ  was 

chosen by calculations using the condensed grids in the stability region according to the Courant criterion 

a at s EΔ < Δ ρ , where aE  is the ultimate modulus of elasticity of the shock absorber. 

In the course of program development, we also modeled:  

—propagation of longitudinal wave in the shock absorber according to the linear and nonlinear laws T(ε);  
—reflection of longitudinal wave from the fixation point; 
—standing waves; 
—resonance.  

COMPARISON OF NUMERICAL AND FULL-SCALE EXPERIMENTS ON THE HORIZONTAL 
TEST BENCH  

Numerical and full-scale experiments were compared in order to verify correspondence between 
the model developed and the real process and estimate the confidence of the velocity values being computed.  

Figure 2 presents the mean static diagram of unloading for a new rubber shock absorber of ∅20 mm 
that is folded in 20 times. The graph was constructed by the results obtained in five experiments on 
the test bench in the Scientific-Research Institute of Aeroelastic Systems, Feodosiya.  

The experimental points were approximated by the least-squares method using the polynomial: 

 T(ε) = 598.01ε5 – 1461.3ε4 + 1376.8ε3 – 596.66ε2 + 126.63ε + 2.6475. 
Using the same shock absorber of 50 m in length and different initial elongation, a number of 

experiments was conducted to accelerate a bogie with a mass of  47 kg on the horizontal test bench.  
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Figure 3 presents the velocity-time diagrams obtained for two experiments with the initial conditions 
being equal. The maximal velocities obtained in both full-scale experiments differ by 8 %; the reason for this 
that it is impossible to provide the stable experiment conditions on the test bench. When the rubber shock 
absorbers are used in the full-scale experiments, it is possible to obtain the velocities of up to 65 m/s. 

 

        

Fig. 2.       Fig. 3. 

Fig. 2. Diagram of unloading for a new rubber shock absorber folded in 20 times. 

Fig. 3. Variation of the bogie velocity in motion at initial elongation of the shock absorber  ε
a 
= 0.9: 1, 2—experiment; 

3—calculation. 

Figure 3 presents also the estimated velocity-time dependence for the bogie moving under the action 
of the shock absorber tension force. As can be seen from this figure, the bogie velocity obtained 
experimentally increases slower than the calculated one. The maximal velocity in calculations is larger than 
the experimentally obtained one by 0 – 8 %. This difference is because the friction in the shock absorber  
motion along the test bench surface is not taken into account.  

USE OF RUBBER SHOCK ABSORBERS FOR ACCELERATING A BOGIE 
 ON THE INCLINED TEST BENCH  

In order to examine a possibility of using the inclined test bench with the adjusted angle of 
the framework slope and impart thereby the initial flight velocities for small-size products, we conducted 
the numerical experiments of the bogie motion along the inclined framework at the angles of its 
installation α = 10° and 30° and different bogie masses mb = 25, 50, and 100 kg. The length of this 
inclined framework is  L = 45 m. 

The calculations were conducted when the number of shock cord folds was k = 4, 10, 18. Tension of 
the shock cord was assumed to be proportional to the number of folds.  

The point C coordinate was determined from the condition that at the initial time instant (when 
the bogie is at the point B) the shock absorber is stretched by 80 %, i.e., BC = 1.8la. The distance from 
the point A up to the point C (Fig. 1) was assumed to be equal to the length of shock absorber in its 
unstrained state: AC = la. 

The friction coefficient was taken μ = 0.1 at the bogie motion along the framework. The coefficient of 
the bogie resistance was cb = 0.95, and the specific  area was  fb = 0.25 m2. 

Figure 4 presents the estimated dependences of the bogie velocity on its displacement Vb(vb). Curves 1, 
2, and 4 illustrate how the number of shock cord folds influence on the bogie velocity variation. Curves 4, 
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5, and 6 show the influence of the bogie mass on its motion. Solid curves are drawn up by calculations at 
α = 10° and the dashed-line curve —at α = 30°. 

Figure 5 presents the graphs of varying the tensile force along the length of the shock absorber 
(the dimensionless Lagrange coordinate of shock absorber is plotted as the abscissas) for different instants 
of time with their corresponding displacements of the bogie with a mass of 25 kg and the framework 
slope α = 30° and the number of the shock cord folds k = 10. As is seen from these graphs, the shock 
absorber tension decreases first in the region of the bogie fixation; this disturbance propagates further 
towards to the fixed point and tension in the vicinity of the point C drops to zero, when the bogie reaches 
the framework end.  

As is seen from the graphs (Fig. 5), the tension at the point of shock absorber fixation to the bogie on 
the section of the bogie motion from 4 to 45 m changes insignificantly. Nonetheless, we see from the 
graph of velocity variation (Fig. 4, dashed-line curve) that acceleration on this section changes 
significantly, and starting from a value of  xb = 30 m, the bogie velocity decreases. This is because 
the projection of the shock absorber tensile force onto the direction of the bogie motion decreases: at 
xb = 24 m  δ = 77° and cos δ = 0.223; at xb = 45 m  δ = 79°, and cos δ = 0.188.  

 

                

Fig. 4.       Fig. 5. 

Fig. 4.Dependence of bogie velocity on displacement: ____ – α = 10°      _ _ _ – α = 30°. 

Fig. 5. Variation of tensile force in the shock absorber in time m
b 
= 25 kg, k = 0, α = 30°. 

Figure 6 presents the shock absorber shape for displacements of the bogie along the test bench 
framework at xb = 0 m,  xb = 24 m, and xb = 45 m. In this case, the influence of the shock absorber shape on 
the bogie motion manifests itself most clearly.   

The maximal velocity, which the bogie can reach as the number of shock cord folds increases, is 
restricted by that the rate of the shock absorber unloading is finite, and this fact is the most evident in Fig. 4. 
When the number of the shock absorber folds is increased up to 18, the bogie velocity with a mass of  
mb = 25 kg increases (at the section, where the displacements are xb < 6 m) by 70 and 22 % as compared 
with the number of the shock cord folds k = 4 and k = 10. Due to the presence of large accelerations in the 
initial section of the bogie motion, the tension in the shock absorber fails to redistribute along its entire 
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length; at the time instant, when the bogie displaces by 6 m, the tension on the section of the shock absorber 
to the bogie  drops to zero  and it moves with the negative acceleration up to xb = 14 m and tension in the 
region of the shock absorber fixation amounts to 702 N. Further, the bogie velocity increases insignificantly. 

 

                
(a)        (b) 

Fig. 6. Shape of the shock absorber in motion: (a) m
b 
= 25 kg; k = 10; α = 30°; (b) m

b 
= 25 kg; k = 10; α = 10°. 

Figure 6 presents the shock absorber shape for mb = 25 kg; k = 10; α = 10°. By comparing Figs. 6a and  
6b, it should be noted that nonuniformity of tension distribution along the shock absorber length and 
curvature at the motion end at α = 10°  are larger than those at α = 30° (since at α = 10°, the bogie 
accelerates much more rapidly than at α = 30°). 

Use of a shock cord of ∅20 mm folded in 4–18 times will make it possible to accelerate the bogie with 
a mass of 25–100 kg  with the framework slope 10–30° up to velocities 23–53 m/s (for comparison, 
according to the reference data [7],  the sound velocity in rubber is equal to 54 m/s.). 

CONCLUSIONS  

In order to simulate the unloading of the rubber shock cords, it seems to be rational to use the equation 
of thread motion and assign the physical relation in the form of nonlinear law (Fig. 2). 

The mathematical model and numerical algorithm for tests on the horizontal and inclined test 
benches were developed with proper regard for nonlinearity of the rubber shock absorber unloading. 
The numerical experiments according to the algorithm developed agree quite well with the full-scale tests.  

Using the rubber shock absorber, a velocity  of up to 64 m/s can be attained on the horizontal stand, 
while  on the inclined stand—a velocity of up to 53 m/s.  
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