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Abstract—The paper deals with the reduced semigroup C∗-algebra for the semidirect product of
semigroups S and P , where P acts on S by automorphisms. We represent this C∗-algebra as the
reduced crossed product of the reduced semigroup C∗-algebra for S by the semigroup P which acts
by automorphisms. The purpose of the paper is to demonstrate that the semicrossed product C∗-
algebras and the semidirect products of semigroups are closely related. We show that the reduced
semigroup C∗-algebra for a semidirect product S �

a
β P is isomorphic to the reduced semicrossed

product C∗-algebra C∗
r (S)�

a
α,r P . We apply this result to the study of the structure of the reduced

semigroup C∗-algebra for the semidirect product Z � Z
× of the additive group Z of all integers and

the multiplicative semigroup Z
× of integers without zero.
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1. INTRODUCTION

In this paper, we study the reduced semigroup C∗-algebra for a semidirect product of semigroups
S and P , where P acts on S by automorphisms. The main purpose of our work is to represent this
C∗-algebra as the reduced semicrossed product of the reduced semigroup C∗-algebra C∗

r (S) by P .
The reduced semigroup C∗-algebras are very natural objects. They are generated by the left regular

representations of semigroups with the cancellation property. The start in studying these algebras was
made by Coburn [1, 2] who considered the reduced semigroup C∗-algebra for the additive semigroup of
the non-negative integers. Douglas [3] investigated the case of subsemigroups in the additive group of
the real numbers. Murphy [4, 5] generalized the results from [1–3] to the case of the reduced semigroup
C∗-algebras for the positive cones in ordered groups. For extensive literature and history of the study of
semigroup C∗-algebras, the reader is referred, for example, to [6] and the references therein.

The subject of the crossed products of C∗-algebras by groups is a well-developed branch of the theory
of C∗-algebras. On the one hand, the crossed products provide interesting examples of C∗-algebras.
On the other hand, the problem on the representation of a C∗-algebra as a crossed product C∗-algebra
attracts a great deal of attention because it has important applications to a variety of questions in the
theory of C∗-algebras. A systematic exposition of the crossed products is contained in the monograph
[7].

An important task of the modern research is the development of a similar theory for the crossed
products of C∗-algebras by semigroups. A theory of the crossed products of C∗-algebras by semigroups
of their automorphisms has been developed by Murphy [8]. For a certain class of semigroups, Laca
and Raeburn [9] proposed the construction of the crossed product of a C∗-algebra by a semigroup of
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endomorphisms. In the paper [10] this construction was generalized. In particular, there was identified
the relationship between the crossed products by automorphisms and endomorphisms. In contemporary
literature, the crossed product of C∗-algebras by semigroups are called the semicrossed product of C∗-
algebras (see the survey [11]).

There are two types of the crossed products of a C∗-algebra A by a locally compact group G. Namely,
these are the full and the reduced crossed products. The full crossed product A�α G should be thought
as a twisted maximal tensor product of A with the full group C∗-algebra C∗(G) of the group G. The
reduced crossed product A�α,r G should be regarded as a twisted minimal (or spatial) tensor product
of A by the reduced group C∗-algebra C∗

r (G). We note that if the group G is amenable, then the full and
the reduced crossed products coincide, that is, A�α G = A�α,r G.

In studying a semicrossed product of C∗-algebra by endomorphisms we have a serious drawback.
Namely, we do not have an explicit nontrivial representation of the semicrossed product at hand. But,
due to Murphy, there is a semicrossed product of C∗-algebra by automorphisms. And this time, we
have a canonical nontrivial representation of the semicrossed product in analogy to the reduced crossed
product by a group.

Our research was motivated by the relationship between the crossed products of algebras by groups
and the semidirect products of groups. Suppose that H and G are locally compact groups and
β : G −→ Aut(H) is a homomorphism such that the action (g, h) �→ βg(h) is continuous. Then, the
semidirect product H �β G is a locally compact group. The action β of the group G can be extended
from the group H to the C∗-algebra C∗(H) (or C∗

r (H)). Denote this action by α. Then, there are the
natural isomorphisms [12, II.10.3.15]

C∗(H �β G) ∼= C∗(H)�α G and C∗
r (H �β G) ∼= C∗

r (H)�α,r G. (1)

As an example, consider the group algebra of the infinite dihedral group. This group is a generaliza-
tion of the finite dihedral groups, which are the symmetry groups of the regular polygons. The infinite
dihedral group can be interpreted as the symmetry group for the set of integers.

Note that the infinite dihedral group is the group D∞ := Z �β Z2, where Z is the additive group of
all integers, Z2 := Z/2Z = {0, 1} is the cyclic group of order two and β : Z2 −→ Aut(Z) is the group
homomorphism such that β0(n) = n and β1(n) = −n whenever n ∈ Z.

We note that the group D∞ is amenable (see, for example, [13, Section 1]). Therefore, the reduced
group C∗-algebra C∗

r (D∞) coincides with the full group C∗-algebra C∗(D∞). So, using (1), we get the
isomorphism of C∗-algebras

C∗
r (D∞) = C∗(D∞) = C∗(Z �β Z2) ∼= C∗(Z)�α Z2, (2)

where C∗(Z) = C∗{u|u∗u = uu∗ = I} is the universal C∗-algebra generated by a unitary element (see,
for example, [14, Appendix]), and α0 = id, α1(u) = u∗.

In [15], we obtained an analogue of the second isomorphism in (1) for the reduced semigroup C∗-
algebra of a discrete semigroup. Namely, let S be a discrete left cancelative semigroup, G be a discrete
group and β : G −→ Aut(S) be a group homomorphism. Then, there exists an isomorphism

C∗
r (S �β G) ∼= C∗

r (S)�α,r G,

where α : G −→ Aut(C∗
r (S)) is the group homomorphism induced by the homomorphism β.

In the present paper, we get a similar result for the case when G is a semigroup. We consider
discrete semigroups S and P with the left cancelation property and a semigroup homomorphism
β : P −→ Aut(S). Then, the semidirect product S �

a
β P is the left cancelative semigroup. In Section 2,

we show that there exists an isomorphism

C∗
r (S �

a
β P ) ∼= C∗

r (S)�
a
α,r P,

where α : P −→ Aut(C∗
r (S)) is the semigroup homomorphism induced by β. In Section 3, this result is

applied to the reduced semigroup C∗-algebra C∗
r (Z �ϕ Z

×) which was studied in [16–18].
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2. PRELIMINARIES

We begin by recalling the definition of the reduced semigroup C∗-algebra for a semigroup.

Let S be a discrete left cancelative semigroup. As usual, the symbol l2(S) stands for the Hilbert space
of all square summable complex-valued functions on S. For every a ∈ S, we denote by ea the function
in l2(S) which is defined as follows: ea(b) = 1, if b = a, and ea(b) = 0, if b �= a, b ∈ S. Then, the set of
functions {ea | a ∈ S} is an orthonormal basis in the Hilbert space l2(S).

In the C∗-algebra of all bounded linear operators B(l2(S)) on the Hilbert space l2(S), we define the
C∗-subalgebra C∗

r (S) generated by the set of isometries {Ta | a ∈ S}, where Ta(eb) = eab for a, b ∈ S.
It is called the reduced semigroup C∗-algebra. The identity element in this algebra is denoted by I.

Now we recall the necessary notions concerning the semicrossed products by automorphisms. Such
semicrossed products were considered by Murphy in [8, 19], then were developed by Li in [10, 20]. We
define the full semicrossed product by automorphisms according to the paper [20, Appendix A].

Let A be a unital C∗-algebra, P be a discrete left cancelative semigroup and α : P −→ Aut(A)
be a semigroup homomorphism. The triple (A, P, α) is called a C∗-dynamical semisystem by
automorphisms.

A covariant representation of theC∗-dynamical semisystem (A, P, α) is a triple (D, π, v) consisting
of a unital C∗-algebra D, a unital ∗-homomorphism π : A −→ D and a homomorphism of semigroups
v : P −→ Isom(D), where Isom(D) is the subsemigroup of isometric elements in D, such that the
covariance relation

π(αp(a))v(p) = v(p)π(a)

is fullfilled for all a ∈ A and p ∈ P . In what follows, we will write v : P −→ D instead of v : P −→
Isom(D).

A morphism Φ : (D1, π1, v1) −→ (D2, π2, v2) of two covariant representations of C∗-dynamical
semisystem (A, P, α) is a unital ∗-homomorphism φ : D1 −→ D2 such that the following diagrams

�1 �2

� �

P

are commutative, i.e., φ ◦ π1 = π2 and φ ◦ v1 = v2.
The (full) semicrossed product associated to the C∗-dynamical semisystem (A, P, α) by automor-

phisms is the covariant representation (A�
a
α P, jA, jP ) of (A, P, α) satisfying the following universal

property: for any covariant representation (D, π, v) of C∗-dynamical semisystem (A, P, α) there exists
a unique morphism of covariant representations

Φ(π,v) : (A�
a
α P, jA, jP ) −→ (D, π, v).

Consider the category associated to the C∗-dynamical semisystem (A, P, α). Objects of this
category are covariant representations of (A, P, α) and morphisms of this category are morphisms of
covariant representations. Then, the semicrossed product associated to (A, P, α) is the initial object of
this category.

The term “semicrossed product” will always mean “full semicrossed product”. The semicrossed
product is unique up to an isomorphism. The C∗-algebra A�

a
α P is called the semicrossed product

C∗-algebra. The existence of the C∗-algebra A�
a
α P is shown in [10].

It is worth noting that for every C∗-dynamical semisystem (A, P, α) by automorphisms there
exists a nontrivial semicrossed product. This is the difference between the semicrossed product by
automorphisms and the semicrossed product by endomorphisms. The latter can be trivial in some bad
cases. For details we refer the reader to [9, 20].

For every C∗-dynamical semisystem (A, P, α) by automorphisms there exists a nontrivial covariant
representation of (A, P, α) in analogy to the left regular representation. Murphy has introduced this
representation in [19]. So we can use Murphy’s construction to define the reduced semicrossed product
C∗-algebra.
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Let π : A −→ B(H) be a faithful representation on a Hilbert space H . Let H ⊗ l2(P ) be the
Hilbert tensor product. Define representations πα : A −→ B(H ⊗ l2(P )) and λ : P −→ B(H ⊗ l2(P ))
as follows

πα(a)(ξ ⊗ eh) = π(α−1
h (a))ξ ⊗ eh,

λ(p)(ξ ⊗ eh) = ξ ⊗ eph, (3)

where a ∈ A, p, h ∈ P , ξ ∈ H and the set of functions {eh | h ∈ P} is an orthonormal basis in the Hilbert
space l2(P ). It is easy to check that the triple (B(H ⊗ l2(P )), πα, λ) is a covariant representation of the
C∗-dynamical semisystem (A, P, α).

Thus, by the universal property of (A�
a
α P, jA, jP ) there exists a unique unital ∗-homomorphism

φ(πα,λ) : A�
a
α P −→ B(H ⊗ l2(P )) such that the following diagrams

��

P
j �

a
� P

(��, �) ��(��, �)
B(H � l 

2(P)), a
� P B(H � l 

2(P))
� �

P

are commutative.
Now the reduced semicrossed product C∗-algebra is the subalgebra in B(H ⊗ l2(P )) defined in

the following way:

A�
a
α,r P := φ(πα,λ)(A�

a
α P ).

We note that the homomorphisms jA : A −→ A�
a
α P and jP : P −→ A�

a
α P are injective and the

C∗-algebra A�
a
α P is generated by all products jA(a)jP (p), where a ∈ A, p ∈ P (see [5, Prop. 1.1]).

Moreover, since the C∗-algebra A is unital, it is easy to see that A�
a
α P is generated by the set

{jA(a)|a ∈ A} ∪ {jP (p)|p ∈ P}. Really, we have

jA(a) = (jA(I)jP (p))
∗jA(αp(a))jP (p), jP (p) = jA(I)jP (p),

where a ∈ A, p ∈ P and I is the unit of the C∗-algebra A.
Since φ(πα,λ)(jA(a)) = πα(a) and φ(πα,λ)(jP (p)) = λ(p), the C∗-algebra A�

a
α,r P is generated by

the set {πα(a)|a ∈ A} ∪ {λ(p)|p ∈ P}.

Let (A, P, α) and ( ˜A, P, α̃) be two C∗-dynamical semisystems by automorphisms. An isomorphism
of C∗-algebras σ : A −→ ˜A is called P-equivariant, if for every p ∈ P the following diagram

�

��P

�
��P

�

�

is commutative, i.e., σ(αp(a)) = α̃p(σ(a)) for all a ∈ A. Note, since αp and α̃p are automorphisms, we
have

σ ◦ α−1
p = α̃−1

p ◦ σ. (4)

In this case, the semicrossed products (A�
a
α P, jA, jP ) and ( ˜A�

a
α̃ P,˜j

˜A,
˜jP ) are canonically iso-

morphic. In other words, there is a unique isomorphism of C∗-algebras ψ : A�
a
α P −→ ˜A�

a
α̃ P such

that ψ ◦ jA = ˜j
˜A ◦ σ and ψ ◦ jP = ˜jP [20].

For the reduced semicrossed product C∗-algebras we have

Proposition 1. Let (A, P, α) and ( ˜A, P, α̃) be C∗-dynamical semisystems by automorphisms.
Let σ : A −→ ˜A be a P -equivariant isomorphism of C∗-algebras. Then, the following equality
holds:

A�
a
α,r P = ˜A�

a
α̃,r P.
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Proof. Let π : A −→ B(H) be a faithful representation of C∗-algebra A on a Hilbert space H . Let
us define the faithful representation of C∗-algebra ˜A on the Hilbert space H by formula π̃ := π ◦ σ−1.
Then, both C∗-algebras A�

a
α,r P and ˜A�

a
α̃,r P are subalgebras in B(H ⊗ l2(P )).

We claim that these subalgebras coincide. Indeed, using (3) and (4) we get

π̃α̃(σ(a))(ξ ⊗ eh) = π̃(α̃−1
h (σ(a)))ξ ⊗ eh = π̃(σ(α−1

h (a)))ξ ⊗ eh

= π(α−1
h (a))ξ ⊗ eh = πα(a)(ξ ⊗ eh)

for every a ∈ A, ξ ∈ H , h ∈ P . Since σ is an isomorphism, the following sets coincide

{πα(a)|a ∈ A} = {π̃α̃(a′)|a′ ∈ ˜A}.

The equality of sets {λ(p)|p ∈ P} and {˜λ(p)|p ∈ P} is obvious.

Because the generating sets of the C∗-algebras A�
a
α,r P and ˜A�

a
α̃,r P are the same, the algebras

coincide, as claimed. �

Remark 1. Let tr denote both the trivial homomorphism tr : P −→ Aut(A) and tr : P −→ Aut( ˜A)

taking each element of P to the identity automorphism of the C∗-algebras A and ˜A. Then, every
isomorphism σ : A −→ ˜A is a P-equivariant isomorphism for the C∗-dynamical semisystems (A, P, tr)
and ( ˜A, P, tr), and we have the equality

A�
a
tr,r P = ˜A�

a
tr,r P.

3. THE SEMIGROUP C∗-ALGEBRa C∗
r (S �β P )

Let S and P be discrete left cancelative semigroups. Let β : P −→ Aut(S) be a semigroup
homomorphism. Let us define the semidirect product of semigroups S and P . To emphasize that the
semigroup P acts on S by automorphisms, we use the notation S �

a
β P . So the semidirect product

S �
a
β P is the semigroup with the underlying set S × P and the semigroup operation given by

(a, p)(b, q) := (aβp(b), pq),

where a, b ∈ S, p, q ∈ P . It is easy to see that the semigroup S �
a
β P has the left cancelation property.

Here the object of our study is the reduced semigroup C∗-algebra C∗
r (S �

a
β P ). We fix arbitrary elements

s, t ∈ S and x, y ∈ P . Let us introduce the notation

Va,s,x := T ∗
(s,x)T(sβx(a),x) and Wp,t,y := T ∗

(t,y)T(t,yp),

where a ∈ S, p ∈ P . We show that the actions of the operators Va,s,x and Wp,t,y on the space l2(S �
a
β P )

do not depend on the choice of the elements s, t, x, y. To do this, we find out how these operators act on
the basis vectors. We have

Va,s,xe(b,q) = T ∗
(s,x)T(sβx(a),x)e(b,q) = T ∗

(s,x)e(sβx(a)βx(b),xq) = T ∗
(s,x)T(s,x)e(ab,q) = e(ab,q), (5)

Wp,t,ye(b,q) = T ∗
(t,y)T(t,yp)e(b,q) = T ∗

(t,y)e(tβyp(b),ypq) = T ∗
(t,y)T(t,y)e(βp(b),pq) = e(βp(b),pq), (6)

where a, b ∈ S, p, q ∈ P . Thus, the actions of the operators Va,s,x and Wp,t,y on the basis vectors do
not depend on the elements s, x and t, y. So the operators Va,s,x and Wp,t,y are denoted by Va and Wp,
respectively.

Lemma 1. The following properties are fulfilled:

1) The operators Va and Wp are isometries for every a ∈ S and p ∈ P ;

2) The C∗-algebra C∗
r (S �

a
β P ) is generated by the set of isometries {Va|a ∈ S} ∪ {Wp|p ∈ P}.
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Proof. 1) Firstly, we calculate the values of the operator V ∗
a at the basis vectors. We note that

V ∗
a e(b,q) = T ∗

(sβx(a),x)
T(s,x)e(b,q) = T ∗

(sβx(a),x)
e(sβx(b),xq) �= 0,

if (sβx(b), xq) = (sβx(a), x)(u, v) for some element (u, v) ∈ S �
a
β P . This implies the equality

(sβx(b), xq) = (sβx(au), xv). Since S and P are left cancelative semigroups, the last equality is possible
if and only if b = au and v = q. Thus, we have

V ∗
a e(b,q) =

{

e(u,q), if b = au;

0, otherwise,
(7)

where a, b, u ∈ S, q ∈ P . Next, using (5) and (7), we get V ∗
a Va = I.

Secondly, we calculate the values of the operator W ∗
p at the basis vectors. We have

W ∗
p e(b,q) = T ∗

(t,yp)T(t,y)e(b,q) = T ∗
(t,yp)e(tβy(b),yq) �= 0,

if (tβy(b), yq) = (t, yp)(u, v) for some (u, v) ∈ S �β P . This implies the equality (tβy(b), yq) =
(tβyp(u), ypv). Since S and P are left cancelative semigroups, the last equality is possible if and only if
b = βp(u) and q = pv. Thus, we have

W ∗
p e(b,q) =

{

e(β−1
p (b),v), if q = pv;

0, otherwise,
(8)

where b ∈ S, p, q, v ∈ P . Next, using (6) and (8), we get W ∗
pWp = I.

2) Let us show that for any a ∈ S, p ∈ P the equality T(a,p) = VaWp holds. Really, using (5) and (6),
we get

VaWpe(b,q) = Vae(βp(b),pq) = e(aβp(b),pq) = T(a,p)e(b,q),

where a, b ∈ S, p, q ∈ P . �

Further, we consider the C∗-algebra C∗
r (S). For constructing the C∗-dynamical semisystem

(C∗
r (S), P, α) by automorphisms we use the following

Lemma 2 [15]. Let γ : S −→ S be an automorphism of the semigroup S. Then, there exists a
unique automorphism γ : C∗

r (S) −→ C∗
r (S) such that γ(Ta) = Tγ(a) whenever a ∈ S.

Thus, if β : P −→ Aut(S) is a semigroup homomorphism, then we have the semigroup homomor-
phism α : P −→ Aut(C∗

r (S)) such that αp(Ta) = Tβp(a) for all p ∈ P , a ∈ S. So we have the C∗-
dynamical semisystem (C∗

r (S), P, α) by automorphisms. We note, since αp and βp are automorphisms,
it is easy to see that α−1

p (Ta) = Tβ−1
p (a) for all p ∈ P , a ∈ S.

Next, let us construct the reduced semicrossed product C∗
r (S)�

a
α,r P by automorphisms. Firstly,

using the inclusion C∗
r (S) ⊂ B(l2(S)), we define the representation π : C∗

r (S) −→ B(l2(S)⊗ l2(P )) on
the generators of the C∗-algebra C∗

r (S) as follows

π(Ta)(eb ⊗ eq) = α−1
q (Ta)eb ⊗ eq = eβ−1

q (a)b ⊗ eq, (9)

where a, b ∈ S, q ∈ P . Secondly, we define the regular representation λ : P −→ B(l2(S)⊗ l2(P )) by

λ(p)(eb ⊗ eq) = eb ⊗ epq, (10)

where b ∈ S, p, q ∈ P . Then, the pair (π, λ) is a covariant representation of the C∗-dynamical
semisystem (C∗

r (S), P, α) by automorphisms. So we have the reduced semicrossed product

C∗
r (S)�

a
α,r P = φ(π,λ)(C

∗
r (S)�

a
α P ).

The C∗-algebra C∗
r (S)�

a
α,r P is generated by the set {π(A)|A ∈ C∗

r (S)} ∪ {λ(p)|p ∈ P}. Therefore,
because the C∗-algebra C∗

r (S) is generated by the set of operators {Ta|a ∈ S}, one can see that the C∗-
algebra C∗

r (S)�
a
α,r P is generated by the set {π(Ta)|a ∈ S} ∪ {λ(p)|p ∈ P}.
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Theorem 1. Let S and P be discrete left cancelative semigroups. Let β : P −→ Aut(S) and α :
P −→ Aut(C∗

r (S)) be semigroup homomorphisms such that αp(Ta) = Tβp(a) for all p ∈ P , a ∈ S.
Then, there exists an isomorphism of C∗-algebras

C∗
r (S �

a
β P ) ∼= C∗

r (S)�
a
α,r P.

Proof. Let us consider the operator U : l2(S)⊗ l2(P ) −→ l2(S �
a
β P ) defined by the formula

U(ea ⊗ ep) = e(βp(a),p), (11)

where a ∈ S, p ∈ P . Since βp is the automorphism, the operator U is unitary.
Furthermore, we claim that the following diagrams are commutative

�(p)

WP

l 
2(S) � l 

2(P)

l 
2(S ��� 

l 
2(S) � l 

2(P)

U U

a
	 P)l 

2(S ��� a	 P)

for every p ∈ P , and

�(Ta)

Va

l 
2(S) � l 

2(P)

l 
2(S ��� 

l 
2(S) � l 

2(P)

U U

a
	 P)l 

2(S ��� a	 P)

for every a ∈ S.
Indeed, using (6) and (11), we get

WpU(eb ⊗ eq) = Wpe(βq(b),q) = e(βp(βq(b)),pq) = e(βpq(b),pq),

where b ∈ S, p, q ∈ P . On the other hand, by (10) and (11), we have

Uλ(p)(eb ⊗ eq) = U(eb ⊗ epq) = e(βpq(b),pq).

Thus, the commutativity of the first diagram is shown.
Consider the second diagram. On the one hand, using (5), we have

VaU(eb ⊗ eq) = Vae(βq(b),q) = e(aβq(b),q),

where a, b ∈ S, q ∈ P . On the other hand, using (9), we get

Uπ(Ta)(eb ⊗ eq) = U(eβ−1
q (a)b ⊗ eq) = e(βq(β

−1
q (a)b),q) = e(aβq(b),q).

The commutativity of the second diagram is proved, as claimed.
Therefore, the equalities

λ(p) = U∗WpU, π(Ta) = U∗VaU (12)

are true for all p ∈ P and a ∈ S, respectively.
Further, we define the isometric ∗-homomorphism

φ : C∗
r (S �

a
β P ) −→ B(l2(S)⊗ l2(P )) : A �−→ U∗AU,

where A ∈ C∗
r (S �

a
β P ). By (12), we have

φ(Wp) = λ(p), φ(Va) = π(Ta)

whenever p ∈ P and a ∈ S.
The image of φ is dense in the C∗-algebra C∗

r (S)�
a
α,r P . It follows from the fact that the C∗-

algebra C∗
r (S)�

a
α,r P is generated by the set {π(Ta)|a ∈ S} ∪ {λ(p)|p ∈ P}. Thus, the homomorphism

φ realizes the required isomorphism between the C∗-algebras C∗
r (S �

a
β P ) and C∗

r (S)�
a
α,r P . �
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4. EXAMPLES

In this section, we give several examples of applications of Theorem 1.
Example 1. Let tr denote both the trivial homomorphism tr : P −→ Aut(C∗

r (S)) taking each element
of P to the identity automorphism of the C∗-algebra C∗

r (S) and the trivial action tr : P −→ Aut(S) of
the semigroup P on the semigroup S. Consider the Cartesian product S ×P . Here we treat S ×P as the
semigroup with the coordinatewise binary operation. Obviously, we have the equality S × P = S �

a
tr P .

Then, using Theorem 1, we obtain

C∗
r (S × P ) ∼= C∗

r (S)�
a
tr,r P. (13)

We note that the C∗-algebra C∗
r (S)�

a
tr,r P ⊂ B(l2(S)⊗ l2(P )) is generated by the set of operators

{πtr(Ta)|a ∈ S} ∪ {λ(p)|p ∈ P}, which act on basis vectors as follows

πtr(Ta)(eb ⊗ eq) = Taeb ⊗ eq = eab ⊗ eq,

λ(p)(eb ⊗ eq) = eb ⊗ epq,

where a, b ∈ S, p, q ∈ P . Thus, it is easy to see, that there exists an isomorphism of C∗-algebras

C∗
r (S)�

a
tr,r P

∼= C∗
r (S)⊗min C∗

r (P ).

Example 2. Let us consider the reduced semigroup C∗-algebra C∗
r (Z �ϕ Z

×), which is studied in
[15–18]. In this and the next two examples we will get different representations of this C∗-algebra as
semicrossed product C∗-algebras.

Here Z is the additive group of all integers and Z
× is the multiplicative semigroup Z \ {0}. Let

ϕ : Z× −→ Aut(Z) be the semigroup homomorphism from Z
× into the semigroup of automorphisms of

the group Z given by

ϕm(n) :=

{

n, if m > 0;

−n, if m < 0,

where m ∈ Z
×, n ∈ Z. So Z�ϕ Z

× is the semidirect product of Z and Z
× with respect to ϕ. It is a

cancellative semigroup with respect to the multiplication defined by

(m,n)(k, l) = (m+ ϕn(k), nl),

where m,k ∈ Z, n, l ∈ Z×.
Theorem 1 implies the following representation for the reduced semigroup C∗-algebra C∗

r (Z �ϕ Z
×)

C∗
r (Z �ϕ Z

×) ∼= C∗
r (Z)�

a
φ,r Z

×, (14)

where φm(Un) = Uϕm(n), n ∈ Z, m ∈ Z
×. Here the operator Un ∈ B(l2(Z)) is unitary and U∗

n = U−n,
n ∈ Z. Therefore, we have φm = id for m > 0 and φm(Un) = U∗

n for m < 0.
Since the group Z is amenable, the C∗-algebra C∗

r (Z) is the universal C∗-algebra generated by the
unitary element u := U1, that is

C∗
r (Z) = C∗(Z) = C∗{u|u∗u = uu∗ = I}. (15)

It is known that the C∗-algebra C∗(Z) is isomorphic to the C∗-algebra C(S1) of all continuous
complex-valued functions on the unit circle in the complex plane (see, for example, [14, Appendix]). Let
us consider the C∗-dynamical semisystem (C(S1),Z×, ˜φ) by automorphisms, where ˜φm = id for m > 0

and ˜φm(f) = f∗ for m < 0 whenever m ∈ Z
×, f ∈ C(S1). It is not difficult to see that the isomorphism

σ : C∗(Z) −→ C(S1) : u �→ {z : eiθ �→ eiθ, 0 ≤ θ < 2π} (16)

is Z
×-equivariant for C∗-dynamical semisystems (C(S1),Z×, ˜φ) and (C∗(Z),Z×, φ). Therefore, using

Proposition 1 and the isomorphism (14), we have the following representation for the reduced semigroup
C∗-algebra C∗

r (Z �ϕ Z
×):

C∗
r (Z �ϕ Z

×) ∼= C(S1)�a
˜φ,r

Z
×.
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Example 3. Now, we will show that the representation

C∗
r (Z �ϕ Z

×) ∼= (C(S1)�α̃ Z2)�
a
tr,r N (17)

holds, where N is the multiplicative semigroup of natural numbers, Z2 := Z/2Z = {0, 1} is the cyclic
group of order two and α̃0 = id, α̃1(f) = f∗, f ∈ C(S1).

Indeed, it was shown in the paper [18] that the semigroup Z �ϕ Z
× is isomorphic to the semigroup

D∞ × N, where D∞ is the infinite dihedral group. Therefore, using (13), we get the isomorphism of
C∗-algebras

C∗
r (Z �ϕ Z

×) ∼= C∗
r (D∞)�a

tr,r N. (18)

Further, by (2), we have the isomorphism of C∗-algebras

C∗
r (D∞) ∼= C∗(Z)�α Z2,

where α0 = id, α1(u) = u∗.
It is easy to check that the isomorphism σ, given by the formula (16), is Z2-equivariant for C∗-

dynamical systems (C∗(Z),Z2, α) and (C(S1),Z2, α̃). Hence, using Proposition 1, we have the
isomorphism of C∗-algebras

C∗
r (D∞) ∼= C(S1)�α̃ Z2. (19)

Finally, the representation (17) follows from the formulas (18), (19) and Remark 1.
Example 4. In this example, we will show that in the formula (17) we can change the places of the

semigroup N and the group Z2. Namely, we will show that the representation

C∗
r (Z �ϕ Z

×) ∼= (C(S1)�a
tr,r N)�γ̃ Z2 (20)

holds, where γ̃0 = id and the automorphism γ̃1 is defined by the action on the generating elements of the
C∗-algebra C(S1)�a

tr,r N as follows: γ̃1(πtr(f)) = πtr(f)
∗, γ̃1(λ(n)) = λ(n), where f ∈ C(S1), n ∈ N.

Let Z× N be the Cartesian product of the additive group of all integers and the multiplicative
semigroup of the natural numbers. It is a semigroup under the multiplication (m,n)(k, l) = (m+ k, nl),
where m,k ∈ Z, n, l ∈ N. In [15, 17], we consider the C∗-dynamical system (C∗

r (Z× N),Z2, γ), where
γ0 = id and γ1 is defined by the action on the generating elements of the C∗-algebra C∗

r (Z × N) in the
following way: γ1(T(m,n)) = T(−m,n) for all m ∈ Z, n ∈ N. In particular, it is proved there that there
exists an isomorphism

C∗
r (Z �ϕ Z

×) ∼= C∗
r (Z× N)�γ Z2. (21)

Further, using (13), (15), (16) and Remark 1, we get the isomorphism of C∗-algebras

τ : C∗
r (Z× N) −→ C(S1)�a

tr,r N,

where τ(T(m,n)) = πtr(z)
mλ(n), m ∈ Z, n ∈ N and {z : eiθ �→ eiθ, 0 ≤ θ < 2π} ∈ C(S1).

It is not difficult to verify that the isomorphism τ is Z2-equivariant for the C∗-dynamical systems
(C∗

r (Z ×N),Z2, γ) and (C(S1)�a
tr,r N,Z2, γ̃). Hence, we have the isomorphism of C∗-algebras

C∗
r (Z× N)�γ Z2

∼= (C(S1)�a
tr,r N)�γ̃ Z2. (22)

Finally, the representation (20) follows from the formulas (21) and (22).

FUNDING

This paper has been supported by the Kazan Federal University Strategic Academic Leadership
Program (“PRIORITY-2030”).

CONFLICT OF INTEREST

The author of this work declares that she has no conflicts of interest.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 1 2024



A SEMIGROUP C∗-ALGEBRA FOR A SEMIDIRECT PRODUCT 461

REFERENCES
1. L. A. Coburn, “The C∗-algebra generated by an isometry,” Bull. Am. Math. Soc. 73, 722–726 (1967).
2. L. A. Coburn, “The C∗-algebra generated by an isometry. II,” Trans. Am. Math. Soc. 137, 211–217 (1969).
3. R. G. Douglas, “On the C∗-algebra of a one-parameter semigroup of isometries,” Acta Math. 128, 143–152

(1972).
4. G. J. Murphy, “Ordered groups and Toeplitz algebras,” J. Oper. Theory 18, 303–326 (1987).
5. G. J. Murphy, “Toeplitz operators and algebras,” Math. Z. 208, 355–362 (1991).
6. X. Li, “Semigroup C∗-algebras,” in Operator Algebras and Applications, Ed. by T. M. Carlsen,

N. S. Larsen, S. Neshveyev, and C. Skau, Vol. 12 of Abel Symposia (Springer, Cham, 2016), pp. 191–202.
7. D. P. Williams, Crossed Products of C∗-Algebras, Vol. 134 of Math. Surv. and Monographs (Am. Math.

Soc., Providence, RI, 2007).
8. G. J. Murphy, “Crossed products of C∗-algebras by semigroups of automorphisms,” Proc. London Math.

Soc. 3, 423–448 (1994).
9. M. Laca and I. Raeburn, “Semigroup crossed products and the Toeplitz algebras of nonabelian groups,”

J. Funct. Anal. 139, 415–440 (1996).
10. X. Li, “Semigroup C∗-algebras and amenability of semigroups,” J. Func. Anal. 262, 4302–4340 (2012).
11. K. R. Davidson, A. H. Fuller, and E. T. A. Kakariadis, “Semicrossed products of operator algebras by

semigroups,” Mem. Am. Math. Soc. 247, 1168 (2017).
12. B. Blackadar, Operator Algebras. Theory of C∗-Algebras and von Neumann Algebras, Vol. 122 of

Mathematical Science (Springer, Berlin, 2006).
13. R. Grigorchuk and R. Yang, “Joint spectrum and the infinite dihedral group,” Proc. Steklov Inst. Math. 297,

145–178 (2017).
14. M. Weber, “On C∗-algebras generated by isometries with twisted commutation relations,” J. Funct. Anal.

264, 1975–2004 (2013).
15. E. V. Lipacheva, “On a semigroup C*-algebra for a semidirect product,” Lobachevskii J. Math. 44, 2118–

2124 (2023).
16. E. V. Lipacheva, “Extensions of semigroups by the dihedral groups and semigroup C∗-algebras,” J. Algebra

Appl. (2022). https://doi.org/10.1142/S0219498824500221
17. E. V. Lipacheva, “On the representation of semigroup C∗-algebra as a crossed product,” Russ. Math. 66 (8),

71–75 (2022).
18. R. N. Gumerov and E. V. Lipacheva, “A semigroup C∗-algebra related to the infinite dihedral group,”

Lobachevskii J. Math. 44, 1332–1340 (2023).
19. G. J. Murphy, “Ordered groups and crossed products of C∗-algebras,” Pacif. J. Math. 2, 319–349 (1991).
20. X. Li, “Ring C∗-algebras,” Math. Ann. 348, 859–898 (2010).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 1 2024


