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Abstract—We establish some new properties of n-potent elements in unital algebras. Particular
attention is paid to ideals in these algebras. As a consequence, we obtain the compactness
conditions for the product AB of a Hilbert space tripotents A and B. In year 2011 we studied the
following question: under what conditions do tripotents A and B commute? Here we try to find out
when do tripotents A and B anticommute. We also determine under what conditions A+B is an
idempotent. We establish similarity of certain idempotents in unital algebras.
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1. INTRODUCTION

Let A be an algebra, n ∈ N. An element A ∈ A is said to be an n-potent if An = A. For n = 2 and
n = 3 we have the standard definitions of idempotents and tripotents, resp. Let P,Q be idempotents on
a Hilbert space H, i.e., P,Q ∈ B(H)id. Various properties (invertibility, Fredholm property, trace class
property, positivity etc.) of the difference X = P −Q have been actively studied in recent decades, see
[1, 7, 9, 12, 15–17, 22–28] and references therein. If X is a trace class operator, the traces of all odd
degrees of X coincide

tr(P −Q) = tr((P −Q)2n+1) = dimker(X − I)− dim ker(X + I) ∈ Z, (1)

here I is the identity operator on H. If X is a compact operator, the right-hand side of (1) gives a natural
“regularization” for the trace, showing that it is always an integer [2, 22]. Pairs of idempotents play
an important part in the Quantum Hall Effect [3]. For idempotents P,Q,R with trace class differences
P −Q and Q−R, the equality tr(P −Q) = tr(P −R) + tr(R −Q) together with (1) imply that

tr((P −Q)3) = tr((P −R)3) + tr((R−Q)3). (2)

Physical sense of additivity in (2) comes from interpretation of tr((P −Q)3) as the Hall conductance.
Additivity of (cubic) equation in (2) can be seen as a variant of the Ohm’s law on additivity of
conductance [20]. In [11, Theorem 1], a C∗-analogue of the Quantum Hall Effect is obtained and it
is proved there that the trace of the differences of a wide class of symmetries from a C∗-algebra is real
[11, Corollaries 2 and 3]. Any tripotent A in an algebra A is a difference P −Q of some idempotents
P,Q ∈ A with PQ = QP = 0 [5, Proposition 1]. Hence tripotents inherit some of the properties of
idempotents [6, 13].

In this article, we establish some new properties of n-potent elements in unital algebras (Theorems 1,
2, 3). Particular attention is paid to ideals in such algebras (Theorems 4, 5). As a consequence, we
obtain a compactness conditions for the product AB of a Hilbert space tripotents A and B (Corollary 1).
In [5, Proposition 2] we studied the following question: under what conditions do tripotents A and B
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commute? In Theorem 6 we try to find out when do tripotents A and B anticommute. We also determine
under what conditions A+B is an idempotent (Theorem 7; cf. [5, p. 2157]). Let A be a unital algebra,
let A,B ∈ A be such that ABA = λA for some λ ∈ C \ {0}. If A is an n-potent for some n ≥ 3 then the
idempotents An−1, λ−1AB and λ−1BA are pairwise similar (Theorem 8).

2. DEFINITIONS AND NOTATION

Let A be an algebra, Aid = {A ∈ A : A2 = A} and Atri = {A ∈ A : A3 = A} be the set of all
idempotents and all tripotents in A, resp. For A,B ∈ A we write A ∼ B if there are X,Y ∈ A
with XY = A, Y X = B. An element X ∈ A is a commutator, if X = [A,B] = AB −BA for some
A,B ∈ A. Elements X,Y ∈ A anticommute, if XY = −Y X. If I is the unit of the algebra A and
P ∈ Aid then P⊥ = I − P ∈ Aid and SP = 2P − I is a symmetry, i.e., S2

P = I. If A,B ∈ A are similar
then A ∼ B.

Let H be a Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators
on H. Let B(H)+ be the positive cone in B(H), let S1(H) be the set of all trace class operators on
H. If A ∈ B(H) then |A| =

√
A∗A ∈ B(H)+. An operator A ∈ B(H) is hyponormal, if A∗A ≥ AA∗;

normal, if A∗A = AA∗; is a partial isometry, if A is isometric on Ker(A)⊥, that is ‖Aξ‖ = ‖ξ‖ for
all ξ ∈ Ker(A)⊥. For dimH = n < ∞ the algebra B(H) can be identified with the full matrix algebra
Mn(C).

3. MAIN RESULTS

Lemma 1 ([5, Proposition 1]). Let A be an algebra. Then for every A ∈ Atri there exist P,Q ∈ Aid

such that A = P −Q and PQ = QP = 0. This representation is unique.
Lemma 2. Let A be an algebra and an n-potent A ∈ A, n ≥ 2. Then
(i) Ak is an n-potent for every k ∈ N;
(ii) An−1 is an idempotent for every n ≥ 3;

(iii) 1
n−1

∑n−1
k=1 A

k is an idempotent for every n ≥ 3.

Proof. (i) We have (Ak)n = Akn = (An)k = Ak.
(ii) We have (An−1)2 = A2n−2 = An ·An−2 = AAn−2 = An−1.

(iii) If B = 1
n−1

∑n−1
k=1 A

k then AmB = BAm = B for every m ∈ N. �

Theorem 1. Consider a unital algebra A and an n-potent A ∈ A, n ≥ 3. If there exists a
right inverse element A−1

r ∈ A (resp., a left inverse element A−1
l ∈ A) then A is invertible with

A−1 = An−2.
Proof. For a right inverse element A−1

r we have

I = AA−1
r = AnA−1

r = An−1 ·AA−1
r = An−1 = An−2A = AAn−2,

i.e., A−1 = An−2. Moreover, A−1 is also an n-potent: (A−1)n = A−n = (An)−1 = A−1 (it also follows
by item (i) of Lemma 2 with k = n− 2). In particular, for n = 3 we have A−1 = A, i.e., A is a symmetry.
�

Note that if an element A ∈ A is right invertible and A−1
r = An−2 then I = AA−1

r = An−1; therefore,
An = A.

Theorem 2. Let J be an ideal in a unital algebra A, A,B ∈ Atri and A+B = λI +K for some
λ ∈ C \ {−2, 0, 2} and K ∈ J . Then AB ∈ J and λ ∈ {−1, 1}.

Proof. Let A = P −Q and B = R−S be the representations of the tripotents A, B by Lemma 1, i.e.,
P,Q,R, S ∈ Aid and PQ = QP = RS = SR = 0. Multiply both sides of the equality A+B = λI +K
by the idempotent P from the left and obtain

P + PR− PS = λP + PK. (3)

Multiply both sides of equality (3) by the idempotent S from the right and obtain −λPS = PKS. Since
λ 	= 0, we have PS ∈ J .
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Next we multiply both sides of the equality A+B = λI +K by the idempotent Q from the left and
obtain

−Q+QR−QS = λQ+QK. (4)

Multiply both sides of equality (4) by the idempotent R from the right and obtain −λQR = QKR. Since
λ 	= 0, we have QR ∈ J .

Multiply both sides of equality (4) by the idempotent S from the right and obtain −(λ+ 2)QS =
QKS. Since λ 	= −2, we have QS ∈ J . Thus AB = PR− PS −QR+QS ∈ J .

If P /∈ J then by (3) we have λ = 1; if Q /∈ J then by (4) λ = −1. Theorem is proved. �

The condition λ ∈ C \ {−2, 0, 2} cannot be omitted in Theorem 2. For the following pairs of
tripotents:

1) A = B = ±I (i.e., λ = ±2), 2) A = −B = ±I (i.e., λ = 0)

their products AB /∈ J .
Corollary 1. Let A = B(H), for a separable Hilbert space H and assume that dimH = +∞.

Consider A,B ∈ Atri such that A+B is a non-commutator and the operators A+B ± 2I are
non-compact. Then the operator AB is compact.

Proof. Let H be a separable Hilbert space, dimH = ∞. An operator A ∈ B(H) is a non-commutator
if and only if A = aI +K for some a ∈ C \ {0} and a compact operator K ∈ B(H) [18, Theorem 3], [21,
Chapter 19, Problem 182]. Thus the operator AB is compact and the operator λI +AB is a non-
commutator for every λ ∈ C \ {0}. �

On other conditions of compactness of products AB for A,B ∈ B(H) see [8, 10, 14] and references
therein.

Theorem 3. Let A ∈ B(H) be a Hermitian n-potent operator, n ≥ 2. Then
(i) if n is even or A ∈ B(H)+ then A is a projection;
(ii) if n is odd then A is a tripotent.
Proof. (i) We have for n = 2k, k ∈ N

A = A2k = Ak(A∗)k = Ak(Ak)∗ ∈ B(H)+.

Therefore, by the Spectral Theorem, A is a projection. If A ∈ B(H)+ then A is a projection by the
Spectral Theorem.

(ii) Let n ∈ N be odd and let A = A+ −A− be the Jordan decomposition of the Hermitian n-potent
operator A ∈ B(H) with A+A− = 0, where A+, A− ∈ B(H)+. Multiply both sides of the equality
A+ −A− = An

+ −An
− by the operator A+ from the right and obtain A2

+ = An+1
+ . Therefore, by the

Spectral Theorem, A+ is a projection. Analogously, we can prove that A− is also a projection. Thus
A3 = A. Theorem is proved. �

If a tripotent A ∈ B(H) is hyponormal then A∗ = A, see [6, Theorem 2]. Consider projections
Pk ∈ B(H) with PkPj = 0 for k 	= j, k, j = 1, 2, 3, and let ω1, ω2, ω3 be the primitive cubic roots of 1.
For the normal 4-potent operator A = ω1P1 + ω2P2 + ω3P3 we have A∗ 	= A.

Corollary 2. For an operator A ∈ B(H) the following conditions are equivalent: (i) |A| is an
n-potent operator for some n ≥ 2; (ii) |A∗| is an n-potent operator for some n ≥ 2; (iii) A is a
partial isometry.

Proof. (i)⇒(iii). By item (i) of Theorem 3 the operator |A| is a projection. Therefore, by the Spectral
Theorem |A|2 = A∗A is a projection and A is a partial isometry by [21, Chapter 13, Problem 98].

(iii)⇒(i). If A is a partial isometry, then A∗A = |A|2 is a projection by [21, Chapter 13, Problem 98].
Hence the operator |A| =

√
|A|2 is a projection by the Spectral Theorem.

(ii)⇔(iii). An operator A ∈ B(H) is a partial isometry if and only if A∗ is a partial isometry [26,
Theorem 2.3.3]. �

Theorem 4. Let J be an ideal in an algebra A. Let A,B,X ∈ A, and let A be a k-potent, B be
an n-potent for some k, n ∈ N. Then the following conditions are equivalent:

(i) AXB ∈ J ;
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(ii) AjXBm ∈ J for some 1 ≤ j ≤ k and 1 ≤ m ≤ n.

Proof. (i)⇒(ii). If j = 1 and m > 1 then AXBm = AXB ·Bm−1 ∈ J . If j > 1 and m = 1 then
AjXB = Aj−1 · AXB ∈ J . If j,m > 1 then AjXBm = Aj−1 · AXB ·Bm−1 ∈ J .

(ii) ⇒ (i). If j = k and m < n then AXB = AXBm · Bn−m ∈ J . If j < k and m = n then AXB =
Ak−j · AjXB ∈ J . If j < k and m < n then AXB = Ak−j ·AjXBm ·Bn−m ∈ J .

In particular, A ∈ J ⇔ Aj ∈ J for some 1 ≤ j ≤ k. �

Theorem 5. Let J be an ideal in an algebra A, A,B ∈ Atri and A = P1 −Q1, B = P2 −Q2 be
the representations of Lemma 1. Then the following conditions are equivalent:

(i) A−B ∈ J ;
(ii) P1 − P2, Q1 −Q2 ∈ J .

Proof. We have Pk, Qk ∈ Aid and PkQk = QkPk = 0 for k = 1, 2.
(i) ⇒ (ii). We apply the scheme of the proof of [9, Corollary 5]. The elements A2 = P1 +Q1,

B2 = P2 +Q2 lie in Aid by item (ii) of Lemma 2. Since A−B = P1 −Q1 − P2 +Q2 ∈ J , the element

A2 −B2 =
1

2
((A+B)(A−B) + (A−B)(A+B)) = P1 +Q1 − P2 −Q2

also belongs to J . Therefore, the elements

P1 − P2 =
1

2
(A−B +A2 −B2), Q1 −Q2 = −1

2
(A−B − (A2 −B2))

lie in J .
(ii) ⇒ (i). We have A−B = P1 − P2 − (Q1 −Q2) ∈ J . �

Lemma 3. Let A be an algebra and A,B ∈ A be such that AB = −BA, i.e., A and B
anticommute. Then AkB2n = B2nAk and A2k+1B2n+1 = −B2n+1A2k+1 for all k, n ∈ N.

Proof. We have AB2 = AB ·B = −BA ·B = −B · AB = −B · (−BA) = B2A. Therefore,

AkB2 = Ak−1 ·AB2 = Ak−1 ·B2A = Ak−2 ·AB2 ·A = · · · = B2Ak

for all k ∈ N. Thus AkB2n = B2nAk for all k, n ∈ N. We have

A2k+1B2n+1 = A2k+1B2n ·B = B2nA2k+1 · B = B2nA2k · AB = −1 · B2nA2k ·BA

= −1 · B2nA2k−1 · AB · A = (−1)2B2nA2k−1 ·BA2 = · · · = (−1)2k+1B2n+1A2k+1

for all k, n ∈ N. �

Theorem 6. Let A be an algebra, A ∈ A and B ∈ Atri, and let B = P −Q be the representation
of Lemma 1. Then the following conditions are equivalent:

(i) AB = −BA, i.e., A and B anticommute;
(ii) AP = QA and AQ = PA.

Proof. (i) ⇒ (ii). We have B2 = P +Q,

A(P −Q) = −(P −Q)A, (5)

and by Lemma 3 obtain

A(P +Q) = (P +Q)A. (6)

Add term by term equalities (5) and (6) and conclude that AP = QA. Subtract term by term relation (6)
from (5) and obtain AQ = PA.

(ii) ⇒ (i). We have AB = A(P −Q) = QA− PA = −BA. �

Let A be a unital algebra, A ∈ Atri, and let A = P −Q be the representation of Lemma 1. Then
B = P⊥ −Q ∈ Aid and AB = BA = 0.

Corollary 3. Let A be an algebra, A ∈ A and P ∈ Aid. Then the following conditions are
equivalent: (i) AP = −PA; (ii) AP = PA = 0.

Proof. Put Q = 0 in Theorem 6. �
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In M2(C) for the tripotents

A =

⎛

⎝
1 0

0 −1

⎞

⎠ , B =

⎛

⎝
0 1

1 0

⎞

⎠

we have AB = −BA. Moreover, A and B are Hermitian symmetries. Let n ∈ N and let X,Y ∈ Mn(C)
anticommute. Then tr(XY ) = tr(Y X) = 0 and the matrices XY , Y X are commutators by [21, Chapter
19, Problem 182]. If n is odd then det(XY ) = 0.

Theorem 7. Let A be a unital algebra, A ∈ Atri and B ∈ A with B2 = I. Then the following
conditions are equivalent:

(i) A+B ∈ Aid;
(ii) Q = 0 and (P −R)2 = I, where A = P −Q is the representation of Lemma 1, R = B+I

2 ∈ Aid.

Proof. (i) ⇒ (ii). We have A2 = P +Q. If A+B ∈ Aid then A2 +AB +BA+ I = A+B, i.e.,

2Q− P −R+ PR+RP −QR−RQ+ I = 0. (7)

Multiply both sides of equality (7) by the idempotent P from the left and obtain

PRP − PRQ = 0. (8)

Multiply both sides of equality (8) by the idempotent P from the right and find that PRP = 0. Therefore,
we have PRQ = 0, see (8). Multiply both sides of equality (7) by the idempotent Q from the left and
by the idempotent P from the right and obtain QRP = 0. Multiply both sides of equality (7) by the
idempotent Q from the left and the right and obtain QRQ = Q.

Multiply both sides of equality (7) by the tripotent P −Q from the left, take into account the relations

PRP = PRQ = QRP = 0, QRQ = Q

and conclude that Q = 0. Thus, A = P ∈ Aid and (7) turns into (P −R)2 = I.
(ii) ⇒ (i). We have equality (7). �

Corollary 4. Let A be a unital algebra, A,B ∈ A with A2 = B2 = I. Then the following
conditions are equivalent: (i) A+B ∈ Aid; (ii) A = −B = I.

Proof. (i) ⇒ (ii). Since A = P ∈ Aid and A2 = I, we have A = P = I. Since (P −R)2 = I, we
have I −R = I and R = 0. Thus, B = 2R− I = −I. �

Theorem 8. Let A be a unital algebra, let A,B ∈ A be such that ABA = λA for some λ ∈
C \ {0}.

(i) If A is an n-potent for some n ≥ 3 then the idempotents An−1, λ−1AB and λ−1BA are
pairwise similar. If A acts on a vector space E , then we have Im(An−1) = Im(λ−1AB) and
Ker(An−1) = Ker(λ−1BA).

(ii) If B is a 2n-potent then P = λ−1BnABn lies in Aid and B2n−1P = PB2n−1 = P .

Proof. By [17, Lemma 3.8] the elements P = λ−1AB and Q = λ−1BA lie in Aid.
(i). We have An−1 ∈ Aid by item (ii) of Lemma 2 and

An−1 · λ−1AB = λ−1AB, λ−1AB ·An−1 = λ−1ABA · An−2 = An−1

(resp., An−1 · λ−1BA = λ−1An−2 · ABA = An−2A = An−1, λ−1BA ·An−1 = λ−1BA). Then, we
apply [15, Lemma 2] and conclude that An−1 and λ−1AB (resp., An−1 and λ−1BA) are similar.

If A acts on a vector space E then by [19, Lemma 2] we have Im(An−1) = Im(λ−1AB) and
Ker(An−1) = Ker(λ−1BA). Since every similarity relation is an equivalence, the idempotents λ−1AB
and λ−1BA are also similar.

(ii) We have

P = λ−1BnABn = Bn · λ−1A ·Bn = Bn · λ−2ABA ·Bn = λ−2BnABn · BnABn = P 2.

Thus, P ∈ Aid. Since B2n−1 ·Bn = Bn · B2n−1 = B3n−1 = B2nBn−1 = Bn, we have B2n−1P =
PB2n−1 = P . Recall that B2n−1 ∈ Aid by item (ii) of Lemma 2. �
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Consider the following complex 2× 2 matrices

A =

⎛

⎝1 z

0 0

⎞

⎠ , B =

⎛

⎝λ μ

0 ν

⎞

⎠ .

Then A ∈ M2(C)
id and ABA = λA. Recall that for an arbitrary A ∈ Mn(C) there exists a pseudo-

inverse B ∈ Mn(C) such that ABA = A (see [26, Theorem 1.4.15]).
If A,B ∈ Mn(C) and A ∼ B then det(A) = det(B) and tr(A) = tr(B). Let A = B(H), where H is a

separable Hilbert space, dimH = ∞. Then there exist operators A ∈ A+ and B ∈ A such that A ∼ B,
A ∈ S1(H), but B /∈ S1(H). Hint: for some projections P,Q ∈ B(H) we have PQP ∈ S1(H), but
QP /∈ S1(H), see [4, Remark 1].

Theorem 9. Let A be an algebra and let A = P −Q and B = S − T be the representations of a
tripotents A,B ∈ Atri by Lemma 1, i.e., P,Q, S, T ∈ Aid and PQ = QP = ST = TS = 0. If A ∼ B
then A2 ∼ B2, P ∼ S and Q ∼ T . Conversely, if P ∼ S and Q ∼ T , then A ∼ B and A2 ∼ B2.

Proof. Let X,Y ∈ A be such that A = XY and B = Y X. Then the elements A2 = P +Q,
B2 = S + T lie in Aid and A2 = XYX · Y and B2 = Y ·XY X. Thus, A2 ∼ B2 and we have

P =
A+A2

2
= X · Y + Y XY

2
and S =

B +B2

2
=

Y + Y XY

2
·X,

Q =
A2 −A

2
= X · Y XY − Y

2
and T =

B2 −B

2
=

Y XY − Y

2
·X,

i.e., P ∼ S and Q ∼ T .
Assume now that P ∼ S and Q ∼ T , i.e., P = EF , S = FE and Q = UV , T = V U for some

E,F,U, V ∈ A. Then

EFUV = UV EF = FEV U = V UFE = 0

and we have

A = EF − UV = (EFE − UV U)(FEF + V UV ),

B = FE − V U = (FEF + V UV )(EFE − UV U);

A2 = EF + UV = (EFE + UV U)(FEF + V UV ),

B2 = FE + V U = (FEF + V UV )(EFE + UV U).

Thus, A ∼ B and A2 ∼ B2. Theorem is proved. �
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