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Abstract—We establish similarity between some tripotents and idempotents on a Hilbert space
H and obtain new results on differences and commutators of idempotents P and Q. In the unital
case, the difference P −Q is associated with the difference AP,Q of another pair of idempotents.
Let ϕ be a trace on a unital C∗-algebra A, Mϕ be the ideal of definition of the trace ϕ. If
P −Q ∈ Mϕ, then AP,Q ∈ Mϕ and ϕ(AP,Q) = ϕ(P −Q) ∈ R. In some cases, this allowed us
to establish the equality ϕ(P −Q) = 0. We obtain new identities for pairs of idempotents
and for pairs of isoclinic projections. It is proved that each operator A ∈ B(H), dimH = ∞,
can be presented as a sum of no more than 50 commutators of idempotents from B(H). It
is shown that the commutator of an idempotent and an arbitrary element from an algebra A
cannot be a nonzero idempotent. If H is separable and dimH = ∞, then each skew-Hermitian
operator T ∈ B(H) can be represented as a sum T =

∑4
k=1[Ak, Bk], where Ak, Bk ∈ B(H) are

skew-Hermitian.
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INTRODUCTION

Let P,Q be idempotents on a Hilbert space H. Various properties (invertibility, Fredholm
property, trace class property, positivity etc.) of the difference X = P −Q have been studied in [1]–
[6]. Any tripotent (A = A3) is a difference P −Q of some idempotents P and Q with PQ = QP = 0
[7, Proposition 1]. Hence tripotents inherit some of the properties of idempotents [8]. If X is a
trace class operator, the traces of all odd degrees of X coincide:

tr(P −Q) = tr((P −Q)2n+1) = dimker(X − I)− dimker(X + I) ∈ Z, (1)

here I is the identity operator on H. If X is a compact operator, the right-hand side of (1) gives a
natural “regularization” for the trace, showing that it always is an integer [9], [6]. In [10, Theorem 3],
a C∗-analogue of the following statement is established: Let ϕ be a trace on a unital C∗-algebra
A, Mϕ be the ideal of definition of the trace ϕ, and P,Q ∈ A be tripotent; if P −Q ∈ Mϕ, then
ϕ(P −Q) ∈ R.

Pairs of idempotents play important role in the Quantum Hall Effect [11]. For idempotents
P,Q,R with trace class differences P −Q and Q−R, the equality tr(P −Q) = tr(P −R) + tr(R−
Q) together with (1) imply

tr((P −Q)3) = tr((P −R)3) + tr((R −Q)3). (2)

Physical sense of additivity in (2) comes from interpretation of tr((P −Q)3) as the Hall conductance.
Additivity of (cubic) equation in (2) can be seen as a variant of the Ohm’s law on additivity of
conductance [12]. In [13, Theorem 1], a C∗-analogue of the Quantum Hall Effect is obtained and
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14 BIKCHENTAEV, FAWWAZ

it is proved there that the trace of differences of a wide class of symmetries from a C∗-algebra is
real [13, Corollaries 2 and 3]. For C∗-subalgebra A ⊂ B(H), we set

A0 =
{
X ∈ A : X =

∑

n≥1
[Xn, X

∗
n] for (Xn)n≥1 ⊂ A

}
,

where the series ‖ · ‖-converges. In [14, Theorem 2.6], it is proved that A0 coincides with the
nullspace of all finite traces on Asa; for a wide class of C∗-algebras, containing all W ∗-algebras, it
is sufficient to consider finite sums of the form [15]. If P,Q ∈ Aid, 1) QP ∈ Aid if and only if [P, Q]
maps subspace PH into subspace KerQ [16, Ch. II, Problem 241]; 2) P and Q are equivalent if
and only if P −Q = [X,Y ] and P +Q = XY + Y X for some X,Y ∈ A [17, p. 97]. In [18], unital
C∗-algebras without finite non-trivial traces are described in terms of finite sums of commutators.

In this article, we establish similarity between some tripotents and idempotents (Theorems 1
and 2). New results on differences and commutators of idempotents P and Q are obtained. In
the unital case, the difference P −Q is associated with the difference AP,Q of another pair of
idempotents. If P −Q ∈ Mϕ, then AP,Q ∈ Mϕ and ϕ(AP,Q) = ϕ(P −Q) ∈ R (Theorem 3). In some
cases, this allowed us to establish the equality ϕ(P −Q) = 0 (Corollary 3). We obtain new identities
for pairs of idempotents and for pairs of isoclinic projections (Lemma 6, Theorem 5). It is proved that
each operator A ∈ B(H), dimH = ∞, can be presented as a sum of no more than 50 commutators
of idempotents from B(H) (Theorem 6). If A is an algebra, {[P,X] : P ∈ Aid, X ∈ A}∩Aid = {0}
(Theorem 7). If H is separable and dimH = ∞, then each skew-Hermitian operator T ∈ B(H) can
be represented as a sum T =

∑4
k=1[Ak, Bk], where Ak, Bk ∈ B(H) are skew-Hermitian (Theorem 8).

Let n ∈ N and A,P ∈ Mn(C) with P = P 2, X = [A,P ]. Then (i) if k ∈ N is odd, Xk is a
commutator; (ii) if n ∈ N is odd, det(X) = 0 (Corollary 6).

1. DEFINITIONS AND NOTATION

For an algebra A, by Aid and Atri we will denote its subsets of idempotents (P 2 = P ) and
tripotents (P 3 = P ) respectively. For A,B ∈ A, define their commutator [A,B] = AB −BA. If
A is unital, by I we denote the unit of algebra A and let P⊥ = I − P for P ∈ Aid. The formula
SP = 2P − I establishes a bijection between sets Aid and Asym.

A C∗-algebra is a complex Banach ∗-algebra A such that ‖A∗A‖ = ‖A‖2 for all A ∈ A. For
a C∗-algebra A, by Apr, Asa and A+ we will denote its subsets of projections (P 2 = P = P ∗),
Hermitian and positive elements respectively. Projections P,Q ∈ A are called isoclinic (with
angle θ ∈ (0, π/2)), if PQP = cos2 θ P and QPQ = cos2 θ Q. If A ∈ A, |A| = √

A∗A ∈ A+. For
a unital C∗-algebra A, by Au and Ainv we will denote its subsets of unitary and invertible elements
respectively.

A W ∗-algebra is a C∗-algebra A which has predual Banach space A∗: A 	 (A∗)∗. Let H be
a Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H. If
P,Q ∈ B(H)pr, then the projection P ∧Q is defined by the equality (P ∧Q)H = PH ∩QH, and
P ∨Q = (P⊥ ∧Q⊥)⊥ projects on lin(PH ∪QH). Any C∗-algebra can be represented as a C∗-
subalgebra in B(H) for some Hilbert space H (Gelfand–Naimark; see [19, Theorem 3.4.1]).

A trace on a C∗-algebra A is such a map ϕ : A+ → [0,+∞] that ϕ(X + Y ) = ϕ(X) +
ϕ(Y ), ϕ(λX) = λϕ(X) for all X,Y ∈ A+, λ ≥ 0 (wherein 0 · (+∞) ≡ 0); ϕ(Z∗Z) = ϕ(ZZ∗) for
all Z ∈ A. For a trace ϕ, define

M+
ϕ = {X ∈ A+ : ϕ(X) < +∞}, Msa

ϕ = linRM
+
ϕ , Mϕ = linCM

+
ϕ .

The restriction ϕ|M+
ϕ

can be correctly extended by linearity to a functional on Mϕ which we will
denote by the same letter ϕ. A W ∗-algebra is called properly infinite, if there is no nonzero normal
finite trace on it.
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2. DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS ON C∗-ALGEBRAS

Let A be a W ∗-algebra, P,Q ∈ Apr and A = PQ. Then there exists a symmetry S ∈ Asa such
that SAS−1 = A∗ [20, Ch. 4, Exercise 4.4]. Let A ∈ B(H) be such that SAS−1 = A∗, where
operator S is strongly invertible in the sense that zero does not lie in the closure of numerical
image of S. Then A is similar to some B ∈ B(H)sa [21].

Lemma 1. Let A be a unital C∗-algebra and A ∈ A, B ∈ Asa. If A and B are similar, A and A∗
are also similar.

Proof. Let T ∈ Ainv be such that A = T−1BT . Then B = TAT−1 and for S = T ∗T ∈ A+ we have

A∗ = (T−1BT )∗ = T ∗B(T−1)∗ = T ∗B(T ∗)−1 = T ∗TAT−1(T ∗)−1 = SAS−1.

Theorem 1. Let A ∈ B(H)tri. Then A and A∗ are similar.

Proof. Due to [8, Theorem 3], any A ∈ B(H)tri is similar to some tripotent B ∈ B(H)sa. Now, the
desired statement follows from Lemma 1.

The following lemma belongs to mathematical folklore.

Lemma 2. Let A be a unital algebra and P,Q ∈ Aid. If PQ = Q and QP = P (respectively PQ = P
and QP = Q), P and Q are similar.

Proof. Let
T = I − P +Q, S = I + P −Q.

Then TS = ST = I and S = T−1. Obviously, SPS−1 = Q (respectively TPT−1 = Q).

In the settings of Lemma 2, we have SQ(P −Q)SQ = Q− P , and if A = Mn(C) with odd n ∈ N,
then the determinant det(P −Q) = 0 due to the theorem on determinant of a product of matrices
and due to the relation det(SQ) ∈ {−1, 1}.

Let A be a unital C∗-algebra and P ∈ Aid. There exists a unique decomposition P = P̃ + Z,
where P̃ ∈ Apr and nilpotent Z ∈ A with Z2 = 0, moreover, ZP̃ = 0, P̃Z = Z [22, Theorem 1.3].

Theorem 2 (cf. [23], Lemma 16). Let A be a unital C∗-algebra and P ∈ Aid, P = P̃ + Z is the
decomposition described above. Then P , P̃ , P ∗ are similar.

Proof. Since ZP̃ = 0 and P̃Z = Z, we have PP̃ = P̃ and P̃P = P . Hence, P and P̃ are similar
due to Lemma 2. As P̃ ∈ Asa, idempotents P and P ∗ are similar due to Lemma 1.

Corollary 1. Let A be a unital C∗-algebra. For S ∈ A, the following conditions are equivalent:
(i) S ∈ Asym;
(ii) S = TUT−1 for some T ∈ Ainv and U ∈ Asa ∩ Au.

Proof. (i)⇒(ii) If P ∈ Aid, P = T P̃T−1 for some T ∈ Ainv due to Theorem 2 or [23, Lemma 16].
Hence,

SP = 2P − I = 2T P̃T−1 − I = T (2P̃ − I)T−1,

i. e., we can take U = 2P̃ − I.

Definition. Let A be a unital algebra and P,Q ∈ Aid. Let
AP,Q = SQPSQ − SPQSP .
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16 BIKCHENTAEV, FAWWAZ

We have AQ,P = AP⊥,Q⊥ = −AP,Q, AP⊥,Q = −AP,Q⊥ = I − SPQSP − SQPSQ and AP,Q(P −
Q) = (P −Q)AP,Q. Let A be a unital C∗-algebra and P ∈ Aid, P = P̃ + Z be the decomposition
described above. Then A

˜P ,P
= 3P − 3P̃ = 3Z.

Lemma 3. Let J be an ideal in a unital algebra A, P,Q ∈ Aid and λ, μ ∈ C, λμ �= 0, λ �= −μ. Then

(i) if P −Q ∈ J , AP,Q ∈ J ;

(ii) we have P,Q ∈ J ⇔ λP + μQ ∈ J .

Proof. (i) We have

AP,Q = SP (P −Q)SP + SQ(P −Q)SQ − (P −Q) = 4QPQ− 4PQP + (P −Q). (3)

In particular, QPQ− PQP ∈ J .

(ii), “⇐”. We have

P =
μ

λ(λ+ μ)
P (λP + μQ)

(λ+ μ

μ
I −Q

)
∈ J.

It is seen from (3) that if {PQ,QP} ∩ {0} �= ∅ (or {P,Q} ∩ {I} �= ∅), AP,Q = P −Q.

Theorem 3. Let ϕ be a trace on a unital C∗-algebra A. If P,Q ∈ Aid and P −Q ∈ Mϕ, then
AP,Q ∈ Mϕ and ϕ(AP,Q) = ϕ(P −Q) ∈ R.

Proof. Recall that Mϕ is an ideal in A, moreover, ϕ(XY ) = ϕ(Y X) for all X ∈ Mϕ, Y ∈ A [19,
Ch. 6, Exercise 6]. Due to item (i) of Lemma 3, we obtain AP,Q ∈ Mϕ. Since

ϕ(SP (P −Q)SP ) = ϕ(SQ(P −Q)SQ) = ϕ(P −Q),

we have ϕ(AP,Q) = ϕ(P −Q) ∈ R due to linearity of the extension of ϕ to Mϕ, (3) and due to [10,
Theorem 3].

Corollary 2. In the settings of item (i) of Theorem 3, for any n ∈ N we have

ϕ(A2n+1
P,Q ) = ϕ(AP,Q) = ϕ(P −Q) ∈ R.

Proof. For any n ∈ N, we obtain from [13, Theorem 1] and (1) that

ϕ(A2n+1
P,Q ) = ϕ(AP,Q) = ϕ(4QPQ− 4PQP + P −Q) = ϕ(P −Q) ∈ R,

since QPQ− PQP ∈ Mϕ and ϕ(QPQ− PQP ) = 0 (see step 2 of the proof of [13, Theorem 1]).

Note that item (i) of the following theorem generalizes item (i) of [24, Theorem 3.2].

Theorem 4. Let ϕ be a trace on a C∗-algebra A.

(i) If X ∈ Atri, Y ∈ A and [X,Y ] ∈ Mϕ, then ϕ([X,Y ]) = 0.

(ii) If X,Y ∈ A and [X,Y ] ∈ Mϕ, then [Xk, Y n] ∈ Mϕ for all k, n ∈ N.

(iii) If X,Y ∈ A and X − Y ∈ Mϕ, then [Xk, Y n] ∈ Mϕ and ϕ([Xk, Y n]) = 0 for all k, n ∈ N.
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Proof. (i) Step 1. Let X ∈ Aid. Since

XY − 2XY X + Y X = X[X,Y ]− [X,Y ]X ∈ Mϕ,

the statement follows from the representation

[X,Y ] = X(XY − 2XY X + Y X)− (XY − 2XY X + Y X)X

and linearity of the extension of ϕ to Mϕ.

Step 2. Let X ∈ Atri and X = P −Q with P,Q ∈ Aid and PQ = QP = 0 [7, Proposition 1].
Then X2 = P +Q ∈ Aid and

[P, Y ] + [Q,Y ] = [X2, Y ] = X[X,Y ] + [X,Y ]X ∈ Mϕ.

By the condition, [P, Y ]− [Q,Y ] = [X,Y ] ∈ Mϕ. From the two last relations, we have [P, Y ], [Q,Y ] ∈
Mϕ, and due to step 1 and linearity of the extension of ϕ to Mϕ, we obtain

ϕ([X,Y ]) = ϕ([P, Y ])− ϕ([Q,Y ]) = 0− 0 = 0.

(ii) Let us use the method of mathematical induction. For all k ≥ 2, we have

[Xk, Y ] = X[Xk−1, Y ] + [X,Y ]Xk−1 ∈ Mϕ.

For all n ≥ 2, we obtain

[Xk, Y n] = Y [Xk, Y n−1] + [Xk, Y ]Y n−1 ∈ Mϕ.

(iii) Step 1. With the help of mathematical induction, we will show that Xk − Y k ∈ Mϕ for all
k ∈ N. Suppose that Xk−1 − Y k−1 ∈ Mϕ. Then

Xk − Y k = Xk−1(X − Y ) + (Xk−1 − Y k−1)Y ∈ Mϕ,

which was required.

Step 2. From the representation

XkY n − Y nXk = (Xk − Y k)Y n − Y n(Xk − Y k),

it follows that [Xk, Y n] ∈ Mϕ and

ϕ([Xk, Y n]) = ϕ((Xk − Y k)Y n)− ϕ(Y n(Xk − Y k)) = 0

for all k, n ∈ N due to linearity of the extension of ϕ to Mϕ.

In particular, if X ∈ A, P ∈ Aid and XP − PXP ∈ Mϕ, then ϕ(XP − PXP ) = 0 due to the
equality XP − PXP = [XP,P ] (see item (i) of Theorem 4).

Example 1. Let A be an algebra and P,Q ∈ Aid, PQ = Q and QP = P . Then PQP = P and
QPQ = Q; we have (P +Q)k = 2k(P +Q) for all k ∈ N and (P −Q)2 = 0. Hence, due to the
theorem on the determinant of a product of matrices, for A = Mn(C) we obtain det(P +Q) =
det(P −Q) = 0.

For idempotents

P =

⎛

⎜
⎜
⎜
⎝

1 0 0

− 1 0 0

1 0 0

⎞

⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎝

1 1 1

0 0 0

0 0 0

⎞

⎟
⎟
⎟
⎠

∈ M3(C)
id,

we have PQP = P and QPQ = Q, however {PQ,QP} ∩ {P,Q} = ∅.
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18 BIKCHENTAEV, FAWWAZ

Lemma 4. Let A be a unital algebra and P,Q ∈ Aid, λ ∈ C \ {0}. Let

A = (1− λ)P + (λ−1 − λ− 1 + λ2)PQ+ λQP + (λ2 − λ4)Q, B = (1− λ)Q+ (2λ−1 − 1)PQ.

If PQP = λ2P and QPQ = λ2Q, then idempotents P and A (respectively Q and B) are similar.
We have (λP − λ−1QP )2 = (λQ− λ−1PQ)2 = 0.

Proof. Let

T = I + λ−1PQ− λQ, S = I − λ−1PQ+ λQ.

Then TS = ST = I and S = T−1. We have SPS−1 = A and TQT−1 = B, hence, A,B ∈ Aid. The
equalities (λP − λ−1QP )2 = (λQ− λ−1PQ)2 = 0 can be easily checked.

Corollary 3. Let A be a unital algebra and P,Q ∈ Aid. If PQP = P and QPQ = Q, then
idempotents P and QP (respectively Q and PQ) are similar. We have (P−QP )2=(Q−PQ)2=0.

In the settings of Lemma 4, we have AP,Q = (1− 4λ2)(P −Q), and if ϕ is a trace on a unital
C∗-algebra A and P −Q ∈ Mϕ, then ϕ(P −Q) = 0. If A is a unital ∗-algabra and P,Q ∈ Aid, then
PQ = Q ⇔ Q∗⊥P ∗⊥ = P ∗⊥.

Lemma 5. If P,Q ∈ B(H)pr and PQP = P , then QP = P , i. e., P ≤ Q.

Proof. Since Q · PQP = QP ·QP = QP , we have

(P −QP )2 = Q⊥PQ⊥P = 0.

Multiply both sides of this relation on the left by projection P , to get (PQ⊥P )2 = 0. Since
PQ⊥P ∈ B(H)+, we have 0 = PQ⊥P = |Q⊥P |2, i. e., |Q⊥P | = 0 and Q⊥P = 0.

Example 2. Let A be a unital C∗-algebra, projections P,Q ∈ Apr be isoclinic with some angle
θ ∈ (0, π/2). Then (cos2 θ P −QP )2 = 0 and

AP,Q = (1− 4 cos2 θ)(P −Q), (4)

for θ = π/3 we have AP,Q = 0. Recall [25, Ch. 2, § 10, item 10.5, (iii)] that

P ∨Q =
1

sin2 θ
(P −Q)2. (5)

Hence, P ∨Q ∈ A,

A2
P,Q = (1− 4 cos2 θ)2 sin2 θ P ∨Q,

sin(P −Q) =
sin(sin θ)

sin θ
(P −Q), cos(P −Q) = I + (cos(sin θ)− 1)P ∨Q,

sinh(P −Q) =
sinh(sin θ)

sin θ
(P −Q), cosh(P −Q) = I + (cosh(sin θ)− 1)P ∨Q

and exp(P −Q) = sinh(P −Q) + cosh(P −Q). The relation

(P −Q)4 = (P −Q)2 − |PQ−QP |2 (6)

(see the proof of [10, Proposition 1]) and (5) give

|[P,Q]| = sin θ cos θ P ∨Q.

If J is a left (or right) ideal in A and P −Q ∈ J , then P ∨Q ∈ J due to equality (5). Hence,
projections P = P ∨Q · P and Q = P ∨Q ·Q lie in J . It is clear that

P −Q ∈ J ⇔ (P −Q)2 ∈ J ⇔ |[P,Q]| ∈ J ⇔ P ∨Q ∈ J ⇔ P,Q ∈ J.

RUSSIAN MATHEMATICS Vol. 65 No. 8 2021



DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS IN C∗-ALGEBRAS 19

If A = Mn(C), we obtain from the theorem on determinant of a product of matrices and from (5)
that

det(P −Q) =

{
0, if P ∨Q �= I;

± sinn θ, if P ∨Q = I.

Corollary 4. Let ϕ be a trace on a unital C∗-algebra A and projections P,Q ∈ Apr be isoclinic with
some angle θ ∈ (0, π/2). If P −Q ∈ Mϕ, then P,Q ∈ Mϕ, and from Theorem 3 and equality (4)
we obtain 0 = ϕ(P −Q) = ϕ(P )− ϕ(Q). From equality (5) we have ϕ(P ∨Q) = ϕ(P ) + ϕ(Q) =
2ϕ(P ).

Lemma 6. Let A be an algebra and P,Q ∈ Aid. Then
(i) (P −Q)4 + (P +Q)4 = 2(P +Q)2 + 2(PQ+QP )2;

(ii) (P −Q)2 + (P +Q)2 = 2(P +Q);

(iii) if A is unital, [P,Q] = (I − P −Q)(P −Q) = −(P −Q)(I − P −Q).

Theorem 5. Let A be a C∗-algebra and projections P,Q ∈ Apr be isoclinic with some angle
θ ∈ (0, π/2). Then sin4 θ P ∨Q+ (P +Q)4 = (2 + cos2 θ)(P +Q)2, where (P +Q)2 = 2(P +Q)−
sin2 θ P ∨Q.

The proof follows from Lemma 6 and equality (5).

Lemma 7. (i) If A is a properly infinite W ∗-algebra, then each commutator [A,B] (A,B ∈ A) can
be represented as a sum of no more than 25 commutators of idempotents from A.

(ii) If H is separable and dimH = ∞, then each commutator [A,B] of operators A,B ∈ B(H)sa

with ‖A‖ < 1, ‖B‖ < 1, can be represented as a sum of no more than 2025 commutators of
projections from B(H).

Proof. (i) Due to [26, Theorem 4], we have

A = P1 + . . . + P5, B = Q1 + . . . +Q5

with some Pk, Qk ∈ Aid, k = 1, . . . , 5.
(ii) If H is separable and dimH = ∞, each operator T ∈ B(H)sa with ‖T‖ < 1 can be represented

as
T = 5(P1 + P2 + P3 + P4)− 5P5 − 8P6 − 12P7

with P1, . . . , P7 ∈ B(H)pr [27, Remark 4].

Theorem 6. Each operator A ∈ B(H), dimH = ∞, can be represented as a sum of no more than
50 commutators of idempotents from B(H).

Proof. Any operator in an infinite-dimensional Hilbert space H can be represented as a sum of two
commutators [28, Corollary 2 from Problem 186]. Now we apply item (i) of Lemma 7, since B(H)
is a properly infinite W ∗-algebra.

Theorem 7. If A is an algebra, {[P,X] : P ∈ Aid, X ∈ A} ∩ Aid = {0}. Generally speaking,
{[P,Q] : P,Q ∈ Aid} ∩ Atri �= {0}.

Proof. Let P ∈ Aid, X ∈ A and

[P,X]2 = [P,X]. (7)

Multiply both sides of (7) on the left and on the right by idempotent P , to get

PXPXP = PX2P. (8)
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20 BIKCHENTAEV, FAWWAZ

Then, multiply both sides of (7) on the right by P , and take into account (8), we obtain PXP = XP .
Multiply both sides of (7) on the left by P , and take into account (8), we obtain PX = PXP . Hence,
[P,X] = 0 and {[P,X] : P ∈ Aid, X ∈ A} ∩ Aid = {0}.

Numbers

a =

√
5− 1

2
, b =

√
a− a2 =

√√
5− 2

satisfy the condition 2a− b2 = 1. In algebra A = M2(C), for idempotents

P =

⎛

⎝
1 b−1

0 0

⎞

⎠ , Q =

⎛

⎝
a b

b 1− a

⎞

⎠

we have [P,Q]2 = diag(1, 1) = I, i. e., [P,Q] ∈ Asym ⊂ Atri \ {0}.

Any operator from B(H), dimH = ∞, can be represented as a finite sum of pair-wise products
of projections ([29]; [30], a theorem). Hence, any skew-Hermitian operator (A∗ = −A) from B(H)
can be represented as a finite sum of commutators of projections [24, Theorem 5.1]. The following
theorem was announced by the first author without proof in [24, p. 12, Statement I].

Theorem 8. If H is separable and dimH = ∞, any skew-Hermitian operator T ∈ B(H) can be
represented as a sum T =

∑4
k=1[Ak, Bk], where Ak, Bk ∈ B(H) are skew-Hermitian.

Proof. We will use [28, Corollary 2 from Problem 186]: any operator T ∈ B(H) can be represented
as a sum of two commutators: T = [A,B] + [C,D] with A,B,C,D ∈ B(H). Let T = −T ∗ and
T = [A,B] + [C,D]. Then

T =
T − T ∗

2
=

AB −BA+A∗B∗ −B∗A∗ + CD −DC + C∗D∗ −D∗C∗

2
. (9)

For any Y ∈ B(H), operators Y − Y ∗, i(Y + Y ∗) are skew-Hermitian, where i ∈ C and i2 = −1.
It is easy to prove that

[A−A∗, B −B∗] + [i(B +B∗), i(A +A∗)] = 2AB − 2BA+ 2A∗B∗ − 2B∗A∗.

Thus,

AB −BA+A∗B∗ −B∗A∗

2
=

[
A−A∗

2
,
B −B∗

2

]

+

[
i(B +B∗)

2
,
i(A+A∗)

2

]

, (10)

CD −DC + C∗D∗ −D∗C∗

2
=

[
C −C∗

2
,
D −D∗

2

]

+

[
i(D +D∗)

2
,
i(C + C∗)

2

]

. (11)

Substitute the right-hand sides of (10) and (11) into (9) to complete the proof.

Corollary 5. If H is separable and dimH = ∞, any skew-Hermitian operator T ∈ B(H) can be
represented as a sum T =

∑4
k=1[Ck,Dk], where Ck,Dk ∈ B(H)sa.

Proof. Let Ck = iBk, Dk = iAk for k = 1, 2, 3, 4.

If P,Q ∈ B(H)pr, then (6) implies (see also [4, Proposition 3])

|PQ−QP |2 = (P −Q)2 − (P −Q)4 ≤ (P −Q)2. (12)

Theorem 9. Let ϕ be a faithful trace on a W ∗-algebra A, A ∈ A and P ∈ Aid. For X = [A,P ],
we have SPX = −XSP . If Xk ∈ Mϕ for some odd k ∈ N, ϕ(Xk) = 0. If, moreover, P = P ∗, then
[|X|, P ] = 0, and for A ∈ Apr with X2 ∈ Mϕ we have ϕ(X2) = 0 ⇔ X = 0.
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Proof. It is clear that XSP = −SPX. For U ∈ A and V ∈ Mϕ, we have ϕ(UV ) = ϕ(V U) (see [19,
Ch. 6, Exercise 6]). Thus, if Xk ∈ Mϕ for some odd k ∈ N, then ϕ(Xk) = 0 (cf. [5, Theorem 2.26]).
If P = P ∗, then X∗SP = −SPX

∗ and SPX
∗SP = −X∗. Hence, |X|2 = SP |X|2SP , i. e., |X|2SP =

SP |X|2 and |X|2P = P |X|2. Now, due to the spectral theorem, we have |X|P = P |X|.
Let A,P ∈ Apr, X = [A,P ] and X2 ∈ Mϕ with ϕ(X2) = 0. Since X2 = −|X|2, from (12) we get

0 = ϕ(X2) = ϕ(−|X|2) = −ϕ(|X|2) = −ϕ((A − P )2 − (A− P )4). (13)

Since (A− P )2 − (A− P )4 ≥ 0 (recall that ‖A− P‖ ≤ 1) and since trace ϕ is faithful, from (13)
we have (A− P )2 − (A− P )4 = 0, i. e., (A− P )2 = |A− P |2 ∈ Apr. Hence, operator U = A− P
is a partial isometry on H. Hence, UU∗U = U [28, Corollary 3 from Problem 98]. From the
equality (A− P )3 = A− P , we get PAP = APA. Hence, PAP ≤ A and AP = PA due to [31,
Proposition 2.1].

Corollary 6. Let n ∈ N and A,P ∈ Mn(C) with P = P 2, X = [A,P ].
(i) If k ∈ N is odd, Xk is a commutator.
(ii) If n ∈ N is odd, det(X) = 0.

Proof. It is known that for T ∈ Mn(C), the following conditions are equivalent: 1) T is unitarily
equivalent to a matrix with zero diagonal; 2) trace tr(T )=0; 3) T is a commutator; 4) tr(|I+zT |) ≥ n
for all z ∈ C. The proof of equivalency 1)⇔2) see in [16, Ch. II, Problem 209], equivalency 2)⇔3)
is proved in [28, Problem 182], equivalency 2)⇔4) is established in [32, Theorem 4.8].

(i) Use equivalency 2)⇔3).
(ii) Since S2

P = I and det(SP ) ∈ {−1, 1} due to the theorem on determinant of a product of
matrices, we apply this theorem to the equality SPX = −XSP with X = [A,P ].
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