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Abstract—We establish similarity between some tripotents and idempotents on a Hilbert space
‘H and obtain new results on differences and commutators of idempotents P and ). In the unital
case, the difference P — () is associated with the difference Ap g of another pair of idempotents.
Let ¢ be a trace on a unital C*-algebra A, M, be the ideal of definition of the trace . If

P—QeM,, then Apg € M, and p(Apq) = (P — Q) € R. In some cases, this allowed us

to establish the equality o(P — Q) =0. We obtain new identities for pairs of idempotents
and for pairs of isoclinic projections. It is proved that each operator A € B(H), dim H = oo,
can be presented as a sum of no more than 50 commutators of idempotents from B(H). It
is shown that the commutator of an idempotent and an arbitrary element from an algebra A
cannot be a nonzero idempotent. If H is separable and dim H = oo, then each skew-Hermitian

operator T' € B(H) can be represented as a sum T = Zizl[Ak, By], where Ay, B, € B(H) are
skew-Hermitian.
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INTRODUCTION

Let P,Q be idempotents on a Hilbert space H. Various properties (invertibility, Fredholm
property, trace class property, positivity etc.) of the difference X = P — @ have been studied in [1]-
[6]. Any tripotent (A = A3) is a difference P — Q of some idempotents P and Q with PQ = QP =0
[7, Proposition 1]. Hence tripotents inherit some of the properties of idempotents [8]. If X is a
trace class operator, the traces of all odd degrees of X coincide:

tr(P — Q) = tr((P — Q)*"!) = dimker(X — I) — dimker(X + I) € Z, (1)

here I is the identity operator on H. If X is a compact operator, the right-hand side of (1) gives a
natural “regularization” for the trace, showing that it always is an integer [9], [6]. In [10, Theorem 3],

a C*-analogue of the following statement is established: Let ¢ be a trace on a unital C*-algebra
A, M, be the ideal of definition of the trace ¢, and P,Q € A be tripotent; if P —Q € 9, then

o(P—Q) eR.

Pairs of idempotents play important role in the Quantum Hall Effect [11]. For idempotents
P,Q, R with trace class differences P — @ and Q) — R, the equality tr(P — Q) = tr(P — R) + tr(R —
Q) together with (1) imply

tr((P - Q)%) = tr((P = R)®) + tr((R — Q)°). (2)

Physical sense of additivity in (2) comes from interpretation of tr((P — Q)3) as the Hall conductance.
Additivity of (cubic) equation in (2) can be seen as a variant of the Ohm’s law on additivity of
conductance [12]. In [13, Theorem 1|, a C*-analogue of the Quantum Hall Effect is obtained and
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14 BIKCHENTAEV, FAWWAZ

it is proved there that the trace of differences of a wide class of symmetries from a C*-algebra is
real [13, Corollaries 2 and 3|. For C*-subalgebra A C B(H), we set

Ao = {X €A X =Y | X X for (Xa)azt C A} ,

where the series || - ||-converges. In [14, Theorem 2.6], it is proved that Ay coincides with the
nullspace of all finite traces on A%; for a wide class of C*-algebras, containing all W*-algebras, it
is sufficient to consider finite sums of the form [15]. If P,Q € A9, 1) QP € A4 if and only if [P, Q]
maps subspace PH into subspace Ker @ [16, Ch. II, Problem 241]; 2) P and @ are equivalent if
and only if P—Q =[X,Y] and P+ Q = XY + Y X for some X,Y € A [17, p. 97]. In [18], unital
C*-algebras without finite non-trivial traces are described in terms of finite sums of commutators.

In this article, we establish similarity between some tripotents and idempotents (Theorems 1
and 2). New results on differences and commutators of idempotents P and @ are obtained. In
the unital case, the difference P — @ is associated with the difference Apg of another pair of
idempotents. If P —Q € M, then Apg € M, and ¢(Apg) = ¢(P — Q) € R (Theorem 3). In some
cases, this allowed us to establish the equality ¢(P — () = 0 (Corollary 3). We obtain new identities
for pairs of idempotents and for pairs of isoclinic projections (Lemma 6, Theorem 5). It is proved that
each operator A € B(H), dimH = oo, can be presented as a sum of no more than 50 commutators
of idempotents from B(#H) (Theorem 6). If A is an algebra, {[P, X]: P € A4, X € A} n A = {0}
(Theorem 7). If H is separable and dim H = oo, then each skew-Hermitian operator T' € B(#) can
be represented as a sum T = 3"3_,[Ay, By], where Ay, By, € B(H) are skew-Hermitian (Theorem 8).
Let n €N and A,P € M,(C) with P=P? X =[A,P]. Then (i) if k€N is odd, X* is a
commutator; (ii) if n € N is odd, det(X) = 0 (Corollary 6).

1. DEFINITIONS AND NOTATION

For an algebra A, by A9 and A" we will denote its subsets of idempotents (P? = P) and
tripotents (P3 = P) respectively. For A, B € A, define their commutator [A4, B] = AB — BA. If
A is unital, by I we denote the unit of algebra A and let P- =1 — P for P € A'Y. The formula
Sp = 2P — I establishes a bijection between sets A4 and AY™.

A C*-algebra is a complex Banach x-algebra A such that ||A*A|| = ||A||? for all A€ A. For
a C*-algebra A, by AP*, A% and A' we will denote its subsets of projections (P? = P = P*),
Hermitian and positive elements respectively. Projections P,Q € A are called isoclinic (with
angle 0 € (0,7/2)), if PQP = cos>f P and QPQ =cos?0Q. If Ac A, |A]=+/A*Ac At. For
a unital C*-algebra A, by A" and A™ we will denote its subsets of unitary and invertible elements
respectively.

A W*-algebra is a C*-algebra A which has predual Banach space A.: A~ (A,)*. Let H be
a Hilbert space over the field C, B(H) be the x-algebra of all linear bounded operators on #H. If
P,Q € B(H)P", then the projection P A @ is defined by the equality (P A Q)H = PHNQH, and
PV Q= (Pt AQY"* projects on lin(PH UQH). Any C*-algebra can be represented as a C*-
subalgebra in B(H) for some Hilbert space H (Gelfand-Naimark; see [19, Theorem 3.4.1]).

A trace on a C*-algebra A is such a map ¢: AT — [0,+00] that (X +Y) = ¢(X) +
oY), o(AX) =X p(X) for all X,Y € AT, A >0 (wherein 0- (+00) =0); ¢(Z2*Z) = ¢(ZZ*) for
all Z € A. For a trace ¢, define

sm; ={X eA": p(X) < +oo}, me = linRﬁ)ﬁ:g, M, = lincﬁ)ﬁ:g.
The restriction 90|im$ can be correctly extended by linearity to a functional on 9, which we will

denote by the same letter . A W*-algebra is called properly infinite, if there is no nonzero normal
finite trace on it.
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DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS IN C*-ALGEBRAS 15

2. DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS ON C*-ALGEBRAS

Let A be a W*-algebra, P,Q € AP" and A = PQ. Then there exists a symmetry S € A% such
that SAS™! = A* [20, Ch. 4, Exercise 4.4]. Let A € B(H) be such that SAS™! = A* where
operator S is strongly invertible in the sense that zero does not lie in the closure of numerical
image of S. Then A is similar to some B € B(H)%* [21].

Lemma 1. Let A be a unital C*-algebra and A € A, B € A%. If A and B are similar, A and A*
are also stmilar.

Proof. Let T € A™ be such that A =T~"'BT. Then B =TAT~! and for S = T*T € A" we have
A* = (T7'BT)* =T*B(T™")* =T*B(T*)"! = T*"TAT " Y(T*)"! = SAS~L.

Theorem 1. Let A € B(H)™. Then A and A* are similar.

Proof. Due to [8, Theorem 3|, any A € B(H)™ is similar to some tripotent B € B(H)%*. Now, the
desired statement follows from Lemma 1.

The following lemma belongs to mathematical folklore.

Lemma 2. Let A be a unital algebra and P,Q € A, If PQ = Q and QP = P (respectively PQ = P
and QP = Q), P and Q are similar.
Proof. Let
T=1I-P+Q, S=1+P—-Q.
Then TS = ST =1 and S = T~!. Obviously, SPS™! = Q (respectively TPT~! = Q).
In the settings of Lemma 2, we have Sg(P — Q)Sq = Q — P, and if A = M, (C) with odd n € N,

then the determinant det(P — @) = 0 due to the theorem on determinant of a product of matrices
and due to the relation det(Sg) € {—1,1}.

Let A be a unital C*-algebra and P € A, There exists a unique decomposition P = P+Z ,
where P € AP' and nilpotent Z € A with Z2 = 0, moreover, ZP =0, PZ = Z [22, Theorem 1.3].

Theorem 2 (cf. [23], Lemma 16). Let A be a unital C*-algebra and P € A4, P = P+ Z is the
decomposition described above. Then P, P, P* are similar.

Proof. Since ZP =0 and PZ = Z, we have PP =P and PP = P. Hence, P and P are similar
due to Lemma 2. As P € A%, idempotents P and P* are similar due to Lemma 1.

Corollary 1. Let A be a unital C*-algebra. For S € A, the following conditions are equivalent:
(i) S € A¥™,
(ii) S = TUT! for some T € A and U € A% N A"

Proof. (i)=(ii) If P € A4, P = TPT! for some T € A™ due to Theorem 2 or [23, Lemma 16].
Hence,

Sp=2P—1=2TPT ' —I=T2P—- 1T,
i.e., we can take U = 2P — I.
Definition. Let A be a unital algebra and P,Q € A9, Let
Apg = 5SqPSg — SpQSp.
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16 BIKCHENTAEV, FAWWAZ

We have AQ,p = APJ—,QJ- = —AP7Q, APJ_’Q = —ARQJ_ =1- SPQSP — SQPSQ and AP7Q(P -
Q)= (P —-Q)Apg. Let A be a unital C*-algebra and P € A4, P = P + Z be the decomposition
described above. Then Az , =3P — 3P =32Z.

Lemma 3. Let J be an ideal in a unital algebra A, P,Q € A and X\, ju € C, A\ # 0, X # —p. Then
(i) if P—Q € J, Apg € J;
(ii) we have P,Q € J < AP+ puQ € J.

Proof. (i) We have
Apg = Sp(P = Q)Sp+ So(P — Q)Sq — (P — Q) = 4QPQ —4PQP + (P Q). (3)
In particular, QPQ — PQP € J.
(ii), “<=". We have

0

B A+
_ )\(}\+M)P(AP+MQ)< ) 1-Q)er

It is seen from (3) that if {PQ,QP} N{0} # @ (or {P,Q}N{I} # @), Apg =P — Q.

Theorem 3. Let ¢ be a trace on a unital C*-algebra A. If P,Q € A9 and P —Q € M, then
Apg €M, and (Apg) = p(P — Q) € R.

Proof. Recall that 9, is an ideal in A, moreover, ¢(XY) = ¢(YX) for all X € M, Y € A [19,
Ch. 6, Exercise 6]. Due to item (i) of Lemma 3, we obtain Apg € M,,. Since

e(Sp(P —Q)Sp) = ¢(Sq(P — Q)Sq) = ¢(P — Q),

we have ¢(Apg) = (P — Q) € R due to linearity of the extension of ¢ to M., (3) and due to |10,
Theorem 3].

Corollary 2. In the settings of item (i) of Theorem 3, for any n € N we have

P(AZS") = p(Apg) = p(P— Q) € R.

Proof. For any n € N, we obtain from [13, Theorem 1] and (1) that
P(APEY) = p(Apq) = p(AQPQ — 4PQP + P — Q) = (P — Q) € R,
since QPQ — PQP € M, and ¢(QPQ — PQP) =0 (see step 2 of the proof of [13, Theorem 1J).

Note that item (i) of the following theorem generalizes item (i) of [24, Theorem 3.2].

Theorem 4. Let ¢ be a trace on a C*-algebra A.
(i) If X € A", Y € A and [X,Y] € My, then p([X,Y]) = 0.
(i) If X,Y € A and [X,Y] € My, then [X*, Y™ € M, for all k,n € N.
(iii) If X,Y € A and X —Y € M, then [X*,Y"] € M, and p([X*,Y™]) =0 for all k,n € N.
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DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS IN C*-ALGEBRAS 17
Proof. (i) Step 1. Let X € A4, Since
XY -2XYX+YX=X[X,Y]-[X,Y]X e M,
the statement follows from the representation
(X, V]=X(XY -2XYX+YX)— (XY -2XYX+VYX)X
and linearity of the extension of ¢ to M.

Step 2. Let X € A" and X = P — Q with P,Q € A'Y and PQ = QP = 0 [7, Proposition 1].
Then X2 =P+ Q € A4 and

[PY]+[Q,Y]=[X?%Y] = X[X,Y]+[X,Y]X € M,.

By the condition, [P, Y] —[Q,Y] = [X,Y] € M. From the two last relations, we have [P,Y],[Q,Y] €
9M,, and due to step 1 and linearity of the extension of ¢ to 9, we obtain

(X, Y]) = o([P.Y]) — ¢([Q,Y]) =0—-0=0.
(ii) Let us use the method of mathematical induction. For all k£ > 2, we have
(X* V] = X[XFL Y]+ (X, V)X e om,.
For all n > 2, we obtain
(XF v = Y[XP Yy 4 XE Yy e .
(iii) Step 1. With the help of mathematical induction, we will show that X* — Y* ¢ M, for all
k € N. Suppose that X*—1 —yk-1 ¢ M. Then
XF vk = XU X —Y)+ (XM YRy ey,
which was required.

Step 2. From the representation
Xkyr _ynxk = (xF —vyRhyyn —yr(xF - vh),
it follows that [X*, V"] € M, and
P(IXF,YM]) = o((XF = YF)Y™) — o(Y"(X* — V")) =0
for all k,n € N due to linearity of the extension of ¢ to I,.

In particular, if X € A, P € A4 and XP — PXP € M, then o(XP — PXP) =0 due to the
equality XP — PXP = [X P, P] (see item (i) of Theorem 4).

Example 1. Let A be an algebra and P,Q € A4, PQ = Q and QP = P. Then PQP = P and
QPQ = Q; we have (P+ Q) =2¥(P + Q) for all k€N and (P —Q)?>=0. Hence, due to the
theorem on the determinant of a product of matrices, for A = M,,(C) we obtain det(P + Q) =
det(P — Q) =0.

For idempotents

1 00 111
P=| _100/|,Q@=|000|eMsC)H,
1 00 000

we have PQP = P and QPQ = @, however {PQ,QP}N{P,Q} = 2.
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18 BIKCHENTAEV, FAWWAZ

Lemma 4. Let A be a unital algebra and P,Q € A, X € C\ {0}. Let
A=1=NP+ A= A=14A)PQ+ QP+ (N - XHQ, B=(1-N)Q+ (22"t —1)PQ.

If PQP = \2P and QPQ = \>Q, then idempotents P and A (respectively Q and B) are similar.
We have (AP — A\"1QP)? = (AQ — A\"1PQ)%? = 0.
Proof. Let

T=I+X'PQ-XQ, S=I1-X"'PQ+)Q.
Then TS = ST =1 and S = T~'. We have SPS™! = A and TQT~! = B, hence, A, B € A4, The
equalities (AP — A71QP)%? = (AQ — A"'PQ)? = 0 can be easily checked.

Corollary 3. Let A be a unital algebra and P,Q € A4, If PQP =P and QPQ = Q, then
idempotents P and QP (respectively Q and PQ) are similar. We have (P— QP)?>=(Q —PQ)?>=0.

In the settings of Lemma 4, we have Apg = (1 —4A?)(P — Q), and if ¢ is a trace on a unital
C*-algebra A and P — @ € M, then o(P — Q) = 0. If A is a unital x-algabra and P,(Q € Aid then
PQ — Q o Q*J_P*J_ — P*J‘.

Lemma 5. If P,Q € B(H)?" and PQP = P, then QP =P, i.e., P < Q.
Proof. Since Q - PQP = QP - QP = QP, we have
(P—-QP)*=Q*tpPQtr=0.
Multiply both sides of this relation on the left by projection P, to get (PQLP)%=0. Since
PQ+P c B(H)T, we have 0 = PQ-P = |Q+PJ?, i.e., |Q*P| =0 and Q+P = 0.

Example 2. Let A be a unital C*-algebra, projections P,Q € AP" be isoclinic with some angle
6 € (0,7/2). Then (cos?0 P — QP)? =0 and

Apg = (1-4cos0)(P - Q), (1)
for § = 7/3 we have Apg = 0. Recall [25, Ch. 2, §10, item 10.5, (iii)| that
1
PVQ= ., (P-Q7 (5)
sin” 6

Hence, PV Q € A,
A%Q = (1 —4cos’6)?sin? P Vv Q,

sin(P — Q) = Sms(lige) (P—-Q), cos(P—Q)=1+ (cos(sinf) —1)PVQ,
sinh(P — Q) = Sinlsli(ji; 2 (P—Q), cosh(P—Q)=1I+ (cosh(sinf)—1)PVQ
and exp(P — Q) = sinh(P — Q) + cosh(P — @Q). The relation
(P-Q)'=(P-Q)*—|PQ- QP (6)

(see the proof of [10, Proposition 1]) and (5) give
[[P,Q]| =sinfcosf PV Q.

If J is a left (or right) ideal in A and P — @ € J, then PV @ € J due to equality (5). Hence,
projections P=PVQ-Pand Q =PV Q-Q liein J. It is clear that

P-QeJe(P-QcJe|PQleJePVvQeJePQcl
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If A =M,,(C), we obtain from the theorem on determinant of a product of matrices and from (5)
that
0, it PvQ+#1I,

det(P — Q) =
P -Q) {isin”@, tPVQ=1

Corollary 4. Let ¢ be a trace on a unital C*-algebra A and projections P, Q) € AP be isoclinic with
some angle 6 € (0,7/2). If P —Q € M, then P,Q € M, and from Theorem 3 and equality (4)

we obtain 0 = (P — Q) = ¢(P) — ¢(Q). From equality (5) we have (P V Q) = ¢(P) + ¢(Q) =
2¢0(P).

Lemma 6. Let A be an algebra and P,Q € A, Then
(i) (P-Q)' +(P+ Q)" =2(P +Q)* +2(PQ + QP)*
(i) (P - Q)P+ (P+Q)*=2(P+Q);
(iil) if A is unital, [P,Q] = (I =P -Q)(P - Q) =—(P-Q)(I - P - Q).
Theorem 5. Let A be a C*-algebra and projections P,Q € AP* be isoclinic with some angle

0 € (0,7/2). Thensin*@ PV Q+ (P+Q)* = (2+cos?0)(P + Q)?, where (P+ Q)? =2(P+ Q) —
sin20 PV Q.

The proof follows from Lemma 6 and equality (5).

Lemma 7. (i) If A is a properly infinite W*-algebra, then each commutator [A, B] (A, B € A) can
be represented as a sum of no more than 25 commutators of idempotents from A.

(i) If H is separable and dimH = oo, then each commutator [A, B] of operators A, B € B(H )%
with ||Al| <1, ||B]| <1, can be represented as a sum of no more than 2025 commutators of
projections from B(H).

Proof. (i) Due to [26, Theorem 4], we have
A:P1—|—...—|—P5, B:Q1++Q5
with some Py, Qr € A4 k=1,...,5.

(ii) If H is separable and dim H = oo, each operator T' € B(#H)%* with ||T'|| < 1 can be represented
as

T = 5(P1 + P+ Py + P4) — 5P, — 8F; — 12P;
with Py, ..., Pr € B(H)P" |27, Remark 4].

Theorem 6. Each operator A € B(H), dimH = oo, can be represented as a sum of no more than
50 commutators of idempotents from B(H).

Proof. Any operator in an infinite-dimensional Hilbert space H can be represented as a sum of two
commutators |28, Corollary 2 from Problem 186|. Now we apply item (i) of Lemma 7, since B(H)
is a properly infinite W*-algebra.

Theorem 7. If A is an algebra, {[P,X]: Pc A X € AAn A4 ={0}. Generally speaking,
{[P,Q]: P,Q e A} nA™ +£{0}.

Proof. Let P € A4, X € A and

[P, X]? = [P, X]. (7)
Multiply both sides of (7) on the left and on the right by idempotent P, to get
PXPXP = PX*P. (8)

RUSSIAN MATHEMATICS Vol. 656 No. 8 2021



20 BIKCHENTAEV, FAWWAZ

Then, multiply both sides of (7) on the right by P, and take into account (8), we obtain PXP = X P.
Multiply both sides of (7) on the left by P, and take into account (8), we obtain PX = PX P. Hence,

[P,X]=0and {[P,X]: Pe A9 X e A}nAd=/{0}.
Numbers

a:\/52_1, b:\/a—azz\/\/5—2

satisfy the condition 2a — b?> = 1. In algebra A = Mjy(C), for idempotents

1 b7t b
p— Co=["“
00 bl—a

we have [P, Q]? = diag(1,1) = I, i.e., [P,Q] € AY™ C A"\ {0}.

Any operator from B(H), dimH = oo, can be represented as a finite sum of pair-wise products
of projections ([29]; [30], a theorem). Hence, any skew-Hermitian operator (A* = —A) from B(H)
can be represented as a finite sum of commutators of projections [24, Theorem 5.1]. The following
theorem was announced by the first author without proof in [24, p. 12, Statement IJ.

Theorem 8. If H is separable and dimH = oo, any skew-Hermitian operator T € B(H) can be
represented as a sum T = Zﬁzl[Ak, By|, where Ay, By, € B(H) are skew-Hermitian.

Proof. We will use [28, Corollary 2 from Problem 186|: any operator T' € B(H) can be represented
as a sum of two commutators: T = [A, B] + [C, D] with A,B,C,D € B(H). Let T'= —-T"* and
T =[A,B] + [C,D]. Then

_T-T* AB-BA+ A*B*— B*A*+CD — DC + C*D* — D*C* ©)
2 2 ’

For any Y € B(H), operators Y — Y*, i(Y + Y*) are skew-Hermitian, where i € C and i? = —1.
It is easy to prove that

[A— A* B — B*| + [i(B + B*),i(A + A*)] = 2AB — 2BA + 2A* B* — 2B*A*

T

Thus,
AB—BA+ A*B*— B*A* [A-A* B-B* N i(B+ B*) i(A+ A% (10)
2 a 2 72 2 ’ 2 ’
CD — DC + C*D* — D*C* C—-C* D— D* i(D 4+ D*) i(C 4+ C*)
9 - 2 7 9 + 9 72 ’ (11)

Substitute the right-hand sides of (10) and (11) into (9) to complete the proof.

Corollary 5. If H is separable and dimH = oo, any skew-Hermitian operator 7' € B(H) can be
represented as a sum T = Y ¢_,[Ck, D], where Cy, Dy € B(H)%.

Proof. Let Cp = iBy, Dy =iAy for k=1,2,3,4.
If P,Q € B(H)P", then (6) implies (see also [4, Proposition 3|)
[PQ-QPIP=(P-Q)°—(P-Q)' <(P-Q)" (12)

Theorem 9. Let ¢ be a faithful trace on a W*-algebra A, A€ A and P € A, For X = [A, P,
we have SpX = —XSp. If XF € M, for some odd k € N, o(X*) = 0. If, moreover, P = P*, then
[|X], P] =0, and for A € AP" with X% € M, we have p(X?) =0 X = 0.
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Proof. 1t is clear that XSp = —SpX. For U € A and V € M,,, we have p(UV') = p(VU) (see [19,
Ch. 6, Exercise 6]). Thus, if X* € 9, for some odd k € N, then ¢(X*) = 0 (cf. [5, Theorem 2.26]).
If P= P* then X*Sp = —SpX* and SpX*Sp = —X*. Hence, |X|> = Sp|X|>Sp, i.e., | X|?Sp =
Sp|X|? and | X|?P = P|X|?. Now, due to the spectral theorem, we have |X|P = P|X]|.

Let A, P € AP", X = [A, P] and X? € 9, with ¢(X?) = 0. Since X2 = —|X|?, from (12) we get

0= (X?) = o(=|X[*) = —p(IX]*) = —p((A = P)* = (A = P)*). (13)

Since (A — P)? — (A — P)* > 0 (recall that ||A — P|| < 1) and since trace ¢ is faithful, from (13)
we have (A — P)? - (A—-P)* =0, i.e., (A—P)?=|A— P> € A*". Hence, operator U = A — P
is a partial isometry on H. Hence, UU*U = U |28, Corollary 3 from Problem 98|. From the
equality (A — P)> = A — P, we get PAP = APA. Hence, PAP < A and AP = PA due to [31,
Proposition 2.1].

Corollary 6. Let n € N and A, P € M,,(C) with P = P2, X = [A, P].
(i) If k € N is odd, X* is a commutator.
(ii) If n € N is odd, det(X) = 0.

Proof. 1t is known that for T' € M,,(C), the following conditions are equivalent: 1) T is unitarily
equivalent to a matrix with zero diagonal; 2) trace tr(7") =0; 3) T is a commutator; 4) tr(|/+zT|) > n
for all z € C. The proof of equivalency 1)<-2) see in [16, Ch. II, Problem 209|, equivalency 2)<3)
is proved in |28, Problem 182]|, equivalency 2)<4) is established in [32, Theorem 4.8|.

(i) Use equivalency 2)<3).
(ii) Since S% =TI and det(Sp) € {—1,1} due to the theorem on determinant of a product of
matrices, we apply this theorem to the equality SpX = —XSp with X = [4, P)].
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