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Abstract—We consider the reduced semigroup C∗-algebras for monoids with the cancellation
property. If there exists a surjective semigroup homomorphism from a monoid onto a group then
the corresponding semigroup C∗-algebra can be endowed with the structure of a Banach module
over its C∗-subalgebra. For a such monoid, we give conditions under which this Banach module is
free.
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INTRODUCTION

The note is concerned with the reduced semigroup C∗-algebras which are generated by the left
regular representations of semigroups with the cancellation property. These algebras are studied by
Coburn [1, 2], Douglas [3] and Murphy [4, 5]. Further, the theory of semigroup C∗-algebras was
developed in the papers by a number of authors (see, for example, [6] and references therein).

We studied properties of the reduced semigroup C∗-algebras in [7–17]. The work presented here
is a continuation of the research carried out in [18]. There we constructed a topological grading of a
semigroup C∗-algebra C∗

r (S) by means of an arbitrary group G. Moreover, the C∗-algebra C∗
r (S) was

endowed with the structure of a left Banach module over its C∗-subalgebra Ae, where e is the unit of
the group G. In the case of a finite group G, it was proved that C∗

r (S) is a finitely generated projective
Hilbert Ae-module.

In this note we give conditions under which the Ae-module C∗
r (S) is a free Banach module. The

grading of the C∗-algebra C∗
r (S) is involved in the proof of the main result on a free Banach module. As

is known, a grading of an object in a category allows to understand better the structure of this object. In
the category of C∗-algebras, one deals with the gradings which are also called the C∗-bundles, or the
Fell bundles. Recall that the notion of the topologically graded C∗-algebra was introduced by Excel (see
for example [19]) with the aim to define non-commutative versions for concepts of harmonic analysis.

The note consists of Introduction and two Sections. Section 1 contains the necessary information
about the semigroup C∗-algebras and the Banach modules over C∗-algebras. In Section 2 we formulate
and prove the results on free Banach Ae-modules.
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1. PRELIMINARIES

Throughout the note S stands for a discrete cancellative monoid with the identity e.

The main object of our study is the reduced semigroup C∗-algebra C∗
r (S) which is defined as follows.

Let us consider the Hilbert space of all square summable complex-valued functions defined on the
monoid S:

l2(S) := {f : S → C |
∑

a∈S
|f(a)|2 < +∞}.

The canonical orthonormal basis in the Hilbert space l2(S) is denoted by {ea | a ∈ S}, where

ea(b) :=

{
1, if a = b ;

0, if a �= b .

The reduced semigroup C∗-algebra C∗
r (S) is the C∗-subalgebra generated by the set of isometries

{Ta | a ∈ S} in the algebra of all bounded operators on l2(S), where the operator Ta is given by the
formula

Ta(eb) = eab, a, b ∈ S.

Further, we recall the necessary definitions concerning modules. Notice, by a module we mean a left
module over an algebra. For more information about the Banach modules, the reader is referred to the
book [20].

Let A be a unital Banach algebra. A module M over the algebra A is called a Banach A-module if
M is a Banach space with a norm satisfying the inequality ||A ·M || ≤ ||A|| ||M || for all A ∈ A,M ∈ M.
A subset X of the Banach A-module M is called a generating set if the set of all finite A-linear
combinations of elements from X is dense in M.

An element M of an A-module M is said to be cyclic if the equality

M = A ·M := {A ·M | A ∈ A}

holds. A module having a cyclic element is itself called a cyclic (or one-generator) module. We recall
that a Banach A-module M is cyclic if and only if it is isomorphic to the quotient module A/I for a closed
left modular ideal I. Moreover, to construct a such isomorphism the annihilator of M, which is the kernel
of the representation associated with M, can be taken as the ideal I in the algebra A [20, Proposition
(VI.2.3)].

Let E be a Banach space. There is the structure of a unital left Banach A-module in the projective
tensor product A⊗̂E which is uniquely determined by the formula

A · (B ⊗X) = AB ⊗X, A,B ∈ A,X ∈ E.

A module is called a free unital Banach A-module if it is topologically isomorphic to the module A⊗̂E
for some Banach space E. In particular, the algebra A is a free unital Banach A-module. The Banach
direct sum of n copies of the module A is also free unital Banach A-module since one has the topological
isomorphism of unital Banach A-modules:

⊕

1

A ∼= A⊗̂C
n. (1)

Here the symbol
⊕
1

denotes the l1-sum (see, for example, [21]).
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2. FREE Ae-MODULE

In what follows, G is an arbitrary group. As in the monoid S, the identity element of G is denoted by
the letter e.

We suppose that there exists a surjective homomorphism of monoids

σ : S −→ G.

To obtain the results of the note we need the topological grading of the semigroup C∗-algebra C∗
r (S)

over G which was constructed in [18]. The definitions of graded and topologically graded C∗-algebras
are contained in [19, §§ 16.2, 19.2]. Further we briefly describe the construction which allows us to set
a grading on the C∗-algebra C∗

r (S).
For every element a ∈ S we consider two symbols T−1

a and T 1
a . We denote by F the free semigroup

over the alphabet {T−1
a , T 1

a | a ∈ S}. The semigroup F is involutive. An element V of this semigroup is
a word (monomial) of the form

V = T i1
a1T

i2
a2 ...T

ik
ak
, (2)

where a1, ..., ak ∈ S, i1, ..., ik ∈ {−1, 1}, k ∈ N. The involution operation on the semigroup F is given
by

V ∗ = T 1−ik
ak

T
1−ik−1
ak−1 ...T 1−i1

a1 .

We define the mapping ind : F −→ G by the formula

ind (V ) = σ(a1)
i1σ(a2)

i2 ...σ(ak)
ik .

It is easily seen that the mapping ind is involutive surjective homomorphism of semigroups. The value
ind (V ) is called the σ-index of monomial V .

Every monomial V defines the bounded linear operator V̂ on the Hilbert space l2(S) as follows:

T̂ 1
a = Ta, T̂

−1
a = T ∗

a ,

and if V is a monomial of form (2) then we put

V̂ = T̂ i1
a1 T̂

i2
a2 ...T̂

ik
ak
.

We call V̂ an operator monomial.
In [18], it is shown that if two monomials define the same linear operator then the σ-indexes of

these monomials coincide. Therefore the value ind (V ) ∈ G is also called the σ-index of an operator
monomial V̂ .

It is straightforward to check that the set of all monomials with the σ-index e is an involutive
subsemigroup in the semigroup of monomials F .

In the sequel, the symbol Ae stands for the C∗-subalgebra generated by the set of all operator
monomials with the σ-index e in the C∗-algebra C∗

r (S).
For every g ∈ G, we denote by the symbol Ag the Banach space which is defined as the closure of the

linear hull for the set of all operator monomials with the σ-index g in the C∗-algebra C∗
r (S).

The family of subspaces {Ag | g ∈ G} constitutes a topological G-grading for the reduced semigroup
C∗-algebra C∗

r (S) [18, Theorem 2]. In the case of a finite group G, the underlying linear space of the
C∗-algebra C∗

r (S) is represented as the finite direct sum of its subspaces [18, Theorem 4]:

C∗
r (S) =

⊕

g∈G
Ag. (3)

It follows from equality (3) that each element A ∈ C∗
r (S) has a unique representation in the form of the

finite sum

A =
∑

g∈G
Ag, (4)
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where Ag ∈ Ag .
Moreover, it is proved in [18, Lemma 5] that the space Ag is a cyclic Banach Ae-module for each

g ∈ G. In order to get a generator of the Banach Ae-module Ag, one takes an arbitrary element xg from
the set σ−1(g). Then we have the equality

Ag = Ae · Txg . (5)

The following theorem provides the condition under which the cyclic Banach Ae-module Ag is a free
Ae-module.

Theorem 1. Let S be a cancellative monoid. Let G be a group with the identity e and
σ : S −→ G be a surjective homomorphism of monoids. For g ∈ G, let Ag be the closed linear hull
for the set of all operator monomials with the σ-index g in the reduced semigroup C∗-algebra
C∗
r (S). If there exists an element xg ∈ σ−1(g) which is invertible in the monoid S then the cyclic

Banach Ae-module Ag is topologically isomorphic to the Banach Ae-module Ae.
Proof. Let xg ∈ σ−1(g) be an invertible element in the monoid S. We define the morphism of Banach

Ae-modules as follows:
ϕ : Ae −→ Ae · Txg : A 
→ A · Txg .

Since equality (5) holds, the module Ag is topologically isomorphic to the quotient module Ae/ kerϕ [20,
Proposition VI.2.3].

We claim that kerϕ = {0}. Indeed, let us suppose that A · Txg = B · Txg for A,B ∈ Ae. Denote
by x−1

g ∈ S the inverse element of xg. To obtain a contradiction, we assume that A �= B. Then
there exists an element a ∈ S such that Aea �= Bea. But, on the other hand, one has the equality
A · Txgex−1

g a = B · Txgex−1
g a, which implies Aea = Bea. Thus we have the contradiction. Hence,

kerϕ = {0}, as claimed.
Therefore there exists a topological isomorphism Ag

∼= Ae of Banach Ae-modules. �

Further, we consider a set X ⊂ S such that for every g ∈ G there exists a unique element x ∈ X
satisfying the condition X ∩ σ−1(g) = {x}. We call X a set of representatives for the preimages
σ−1(g), where g ∈ G. In [18], it is proved that the C∗-algebra C∗

r (S) is a Banach Ae-module with the
generating set {Tx | x ∈ X}.

The following theorem contains sufficient conditions under which the Ae-module C∗
r (S) is a free

Banach Ae-module.
Theorem 2. Let S be a cancellative monoid. Let G be a finite group with the identity e and

σ : S −→ G be a surjective homomorphism of monoids. Let Ae be the C∗-subalgebra in the C∗-
algebra C∗

r (S) generated by all operator monomials with the σ-index e. If there exists a set X of
representatives for the preimages σ−1(g), g ∈ G, which is contained in a subgroup of the monoid
S, then the Ae-module C∗

r (S) is a free Banach Ae-module.
Proof. Under the hypotheses of the theorem, we shall show that there is a topological isomorphism

C∗
r (S)

∼= Ae⊗̂C
n

of Banach Ae-modules, where n is an order of the group G. To do this, by (1) and (3), it is sufficient to
prove that there exists a topological isomorphism

⊕

g∈G
Ag

∼=
⊕

1

Ae (6)

between the Banach Ae-modules. On the right-hand side of (6), the number of summands in the direct
l1-sum is equal to the order of the group G. Below we denote an arbitrary element of this sum by a tuple
B = (Bg)g∈G, whose norm is given by ||B||1 =

∑
g∈G

||Bg||, where Bg ∈ Ae. On the left-hand side of (6),

every element of the direct sum of linear subspaces is written as sum (4).
To construct isomorphism (6), we take a set X of representatives such that each x ∈ X possesses

the inverse element in the monoid S. Then, by Theorem 1, for every g ∈ G there exists a topological
isomorphism of Banach Ae-modules

ψg : Ae −→ Ag.
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Using the topological isomorphisms ψg, we define the linear operator

α :
⊕

1

Ae −→
⊕

g∈G
Ag

by the formula α(B) =
∑
g∈G

ψg(Bg).

It is straightforward to check that the operator α is surjective. The linear independence of the family
of subspaces {Ag}g∈G implies the injectivity of the operator α.

The continuity of the operator α follows from the chain of the inequalities

||α(B)|| ≤
∑

g∈G
||ψg(Bg)|| ≤ max

g∈G
||ψg||

∑

g∈G
||Bg|| = max

g∈G
||ψg|| ||B||1.

By the Banach inverse operator theorem, since α is a bijective bounded linear operator between
Banach spaces, its inverse linear operator

α−1 :
⊕

g∈G
Ag −→

⊕

1

Ae

is bounded as well.
Obviously, both operators α and α−1 are morphisms of left Ae-modules. Thus the operator α is a

topological isomorphism of Ae-modules.
Finally, we conclude that the C∗-algebra C∗

r (S) is a free Banach Ae-module, as required. �
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