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Abstract—The results of mathematical simulation of a solid velocity damping by a soft skeleton
fabric shell filled with air on impact on a hard surface are given. The equations of motion of a falling
body and of the loading dynamics of membrane shells and the reinforcement rings in the fabric shell
are considered together. The mathematical model and the numerical algorithm for solving the spatial
problem of the dynamics of inflation of a shell with reinforcement rings are explicitly realized by
the finite difference method. The boundary conditions are posed with regard to the contact of the
shell elements in compression near the ring belts. The results of numerical experiments considering
the interaction of the falling body with the deformable skeleton shell are discussed. The parameters
influencing the process of the body braking on impact on a surface are determined.
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INTRODUCTION

Inflated fabric shells are used in aviation to absorb the energy in landing operations. Therefore, the
mathematical simulation of such processes is of great importance.

In the present paper, we consider the shells which belong to the class of shells with large dis-
placements and strains and which are reinforced by skeletons. The shell structures which experience
superlarge strains in loading with elongation degrees up to λ = 4 were considered in [1–3, 17, 18]. The
skeleton fabric shells with elongation degrees up to λ = 1.3 attained in the exploitation are widely used
in the parachute technology [4].

The methods for calculating the interaction of parachute-type skeleton shells with the environment
were developed in [5–12].

The fabric shells are also used in shipbuilding for restricting the motion of goods and fastening them
by inflated elements [13]. The skeleton shells also find application in the building of inflated structures,
such shells were calculated in [14].

The finite strains in shells were theoretically studied in [15–19] on the basis of the Kirchhoff geometric
hypothesis stating that the normal to the middle line before deformation remains normal to it after
deformation.

The most closely related problems are the following ones: the inverse problem, i.e., the lifting of a
weight by an inflated soft shell, was considered in [18], pp. 135–140, and the impact of a soft spherical
rubber-like gas-filled shell on an absolutely hard surface was considered in [11].

1. STATEMENT OF THE PROBLEM

We model the vertical impact of a rigid body equipped with an inflated skeleton fabric shell attached
to its bottom on a horizontal hard surface.

We assume that, at the moment of contact between the lower part of the shell with the horizontal
surface, the velocity of the falling body is equal to Vgr and directed vertically downwards, see Fig. 1. The
energy of the falling weight is absorbed by the deformation of the fabric shell, i.e., the pressure inside
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Fig. 1.

the shell which acts against the weight motion. When considering the compression of the shell, it is
necessary to regard the conditions of contact between the contacting elements.

Thus, the dynamics of the shell is influenced by the conditions of contact with the falling weight, the
conditions of contact with the surface, the shell structure including the conditions of contact between
the shell and the ring reinforcement belts, the compression conditions, and the conditions of contact of
the shell itself in the process of braking. We assume that the cargo weight is uniformly distributed over
the area of the upper part of the cylindrical shell and this area remains unchanged in time. The area of
the lower part of the shell adjacent to the surface also remains unchanged in the process of the shell
compression due to the falling weight.

2. METHOD AND CONSTRUCTION OF THE SOLUTION
The unstrained shell Ω0 at time t = t0 under the action of external and internal forces t > t0 is

deformed Ω and moves in space xγ , γ =1, 2, 3. The shell Ω0 is referred to curvilinear coordinates α1, α2, z
with is normally fixed to the middle surface σ0.

After deformation, an arbitrary point M0 at time t becomes M(αi, z) ∈ Ω.
The deformed membrane shell, in cross-sections αi = const and z = const at time t, has thickness

h∗ = h(1 + ε3), where ε3 is the true strain and λ3 is the multiplicity of elongations in the transverse
direction z.

The vector of true stresses σi and σ3 is determined by the expressions

σi = σijej , σ3 = σ33e3, (2.1)

where σij and σ33 are physical components of stresses and ej and e3 are the unit vectors on the deformed
surface.

In the theory of soft shells, one considers the tensions instead of stresses, because the notion of
thickness is rather conditional for fabric shells. After integration of (2.1) over the shell thickness h∗, we
obtain

Ti = T ijej , T3 = T 33e3,

where T ij = hλ3σ
ij and T 33 = hλ3σ

33 are physical components of tensions.
Assume that a small distinguished surface element of area dσ =

√
G∂α1∂α2 is under the action of

surface forces p− and p+ applied on the sides of the surfaces z = −h∗/2 and z = h∗/2 and the mass
force Q, which are determined by the expressions

p = pe3 dσ = pe3

√
G∂α1 ∂α2, Q = gρh∗ dF = gh∗ρ

√
G∂α1 ∂α2,
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Fig. 2.

where p = p+ − p− is the excess pressure acting on the shell and referred to the unit area σ, ρ is the
density of the shell material, which does not change in the process of deformation because the shell
material is assumed to be incompressible, and g is the free fall acceleration.

In the membrane shell theory, the transverse force is assumed to be T 33 = 0 [2], which permits
assuming that the formed stress strain state (SSS) of the shell is plane stressed. Applying internal,
external, and inertial forces to the distinguished shell element and following the d’Alambert principle, we
obtain the equation of motion of the form

ρh∗
√

G
∂2r
∂t2

=
∂

∂α1
[(T 11e1 + T 12e2)

√
G22] +

∂

∂α2
[(T 22e2 + T 21e1)

√
G11] + (p + ρh∗g)

√
G, (2.2)

where the unknowns are the vector function r and the components of the true internal forces T ij .
We consider the common deformation of a smooth shell and an element of the shell reinforcement,

see Fig. 2. Assume that an absolutely flexible homogeneous filament of linear density ρs moves in
space xγ , γ = 1, 2, 3, under the action of a normal load of intensity Fn and a tangential load of
intensity Fτ . The filament deformation is characterized by the elongation degree λ = ds/ds0 or the
relative elongation ε = λ− 1. The dependence of the elongation on the strain is assumed to be T = T(λ)
for λ > 0 and T = 0 for λ ≤ 0. The mass of the filament element before and after deformation remains
the same: dm = ρ0 ds0 = ρs ds.

The equation of motion of an element of the elastic heavy filament in the field of gravity has the form [9]

ρ0
∂2r
∂t2

=
∂T
∂s0

+ Fnλ + Fτλ + gρ0, (2.3)

where r(s0, t) is the radius vector of an arbitrary point of the filament element.
Let us consider the system of Eqs. (2.2) and (2.3). Assume that the shell reinforcement element

lies on one of the Lagrangian coordinates of the shell (for example, α2). The reinforcement element has
a great rigidity and separates the shell into two subregions G1 and G2, see Fig. 2. Assume that, on
the boundaries of these subregions of contact, on the reinforcement element, the tangential T 12

(1), T 12
(2)

and normal T 11
(1), T 11

(2) tensions are realized, where the subscripts indicate the subregions G1 and G2.
Then the equations of motion of each subregion are described by formula (2.2) with the respective
boundary tensions T 12

(1), T 11
(1) and T 12

(2), T 11
(2) for these subregions. And the vectors Fn and Fτ contained

in the equation of motion of the shell reinforcement element (2.2) are determined in terms of the
tensions T 12

(1), T 11
(1) and T 12

(2), T 11
(2) and the external loads pl acting on the reinforcement element. Thus, we

consider equations of motion of smooth shells and reinforcement elements with regard to the boundary
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conditions. We note that, in the case without reinforcement elements, the shell motion is determined
only by Eq. (2.2).

The cutting height of the shell is l1. The coordinate α1 varies in the range 0 ≤ α1 ≤ l1, and the
coordinate α2, in the range 0 ≤ α2 ≤ l2.

The initial conditions for the shell are r(α1, α2, t0) = r0(α1, α2).
The boundary conditions of the problem are the following ones. The upper and lower covers are

assumed to be absolutely rigid. The cargo weight is uniformly distributed through the upper cover along
the line α2 = l2. For t ≥ t0, we have for the upper and lower covers:

r(0, α2, t) = r0(0, α2), r(l1, α2, t) = r0(l1, α2).

The equation of motion of the cargo of mass mgr is assumed to be

mgr
dVgr

dt
= (P1 −P0)πr2

k − mgrg − 2πrkT11(0, a2, t)e1 cos γ, (2.4)

where P1 is the vector of pressure inside the shell, P0 is the atmospheric pressure, g is the free fall
acceleration, and γ is the angle between the direction of the action of the shell tension T11 at the point
of connection of the upper cover with the radius rk and the direction of the vector of the weight motion
velocity.

We assume that the impact contact surface is smooth. In the case of a different surface configuration,
it is necessary to introduce additional conditions on the boundary of contact between surface and the
soft shell.

The natural boundary conditions in the shell compression are the conditions of contact between the
shell elements along the reinforcement ring belts.

In numerical simulation of a soft shell in the process of oscillatory motion, due to different velocities
of elements, one can observe mutually intersecting regions in the computations. The soft shells can
contact but do not admit mutual intersection. Therefore, it is necessary to supplement the computational
algorithm with the conditions takin this fact into account. Such conditions will be called the contact
conditions.

Assume that two curvilinear smooth surfaces G1 and G2 (Fig. 3) contact with the shell elements
at points M1 and M2. The curve M1N1 belongs to the surface G1, and the curve M2N2 belongs to
the surface G2. The variation parameters along these curves are the arc lengths s1 and s2. The current
coordinates α1 and α2 are functions of s1, i.e., α1 = α1(s1) and α2 = α2(s1). Assume that the length
of arc M1N1 is equal to Δs1, and point P1 is the foot of the perpendicular dropped from point N1 to the
tangent plane passing through point M1. At point M1, we construct the unit vector m1 directed along
the normal to the surface G1. The vector P1N1 is parallel to the vector m1 and then P1N1 = δ1m1,
where the coefficient δ1 is positive if the deviation P1N1 from the tangent plane is directed towards the
vector m1, and it is negative otherwise. Similarly, we obtain P2N2 = δ2m2 for the surface G2 passing
through point M2.

It is known from the differential geometry that, for infinitely small displacement of point N1 from
point M1, the distance P1N1 is equal to half the second quadratic form of the surface G1, i.e., δ1 =I2,G1/2,
and the distance between points P2 and N2 is respectively equal to δ2 = I2,G2/2.

Therefore, if points M1 and M2 on the surfaces G1 and G2 contact each other, then, for an infinitely
small displacement of points N1 and N2 on these surface along the lines s1 and s2, to prevent the contact
between the shell elements, it is necessary that the deviations P1N1 and P2N2 be positive:

δ1 > 0, δ2 > 0. (2.5)

The second quadratic form is determined by the expression [16]

I2,G = b11 dα2
1 + 2b12 dα1 dα2 + b22 dα2

2,

b11 = mr11, b12 = mr12, b22 = mr22, rik =
∂2r

∂αi∂αk
.

Thus, it is necessary to supplement the algorithm for calculating the dynamics of a soft skeleton
shell with reinforcements with an analysis of the contact conditions for points belonging to different
subregions, i.e., expressions of the form (2.5).
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Fig. 3.

In what follows, for (2.2) instead of three unknown functions of displacements uγ(α1, α2, t), we
consider new unknown variables representing r as

r = r(α1, α2, t) =
3∑

γ=1

xγiγ = xγiγ , xγ = xγ(α1, α2, t),

where xγ are new unknowns which are the coordinates of an arbitrary point on σ with respect to the fixed
orthogonal Cartesian coordinates Ox1x2x3 with unit vectors iγ . Then, the following relations determine
the main basis vectors rj and the metric tensor components Gij :

rj =
∂r
∂αj

= xj,γiγ , rj,γ =
∂xγ

∂αj
, Gjm = rjrm = rj,krm,k. (2.6)

In this case,

ei =
ri√
Gii

= liγiγ , ljγ =
rj,γ√
Gjj

, e3 = e1 × e2

√
G11G12√

G
,

where lδγ = cos(eδ, iγ) are the direction cosines given by the expressions ljγ = rj,γ/
√

Gjj :

l31 = (l12l23 − l13l22)
√

G11G22√
G

,

l32 = (l13l21 − l11l23)
√

G11G22√
G

,

l33 = (l11l22 − l12l21)
√

G11G22√
G

.

(2.7)

Assume that the vector g is directed along the axis x3. Then g = gi3. We project Eq. (2.2) on the
Cartesian axes and, taking relations (2.7) into account, obtain the three equations of motion

ρh∗
√

G
∂2xγ

∂t2
=

∂

∂α1
[(T 11l1γ + T 12l2γ)

√
G22]

+
∂

∂α2
[(T 22l2γ + T 21l1γ)

√
G22) + p3l3γ

√
G(1 − δ3γρh∗g),

δ31 = δ32 = 0, δ33 = 1, γ = 1, 2, 3.

(2.8)
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To close the obtained system of equations comprising the equations of motion (2.8) and the geometric
and kinematic relations (2.6) and (2.7), it is necessary to composed physical relations for the shell with
fabric base.

2.1. Physical Relations for the Fabric Shell

The fabric materials have small shear rigidity, approximately up to 2% compared with the extension
rigidity [14]. Therefore, we can assume that the elasticity moduli are equal to E12 = E21 = 0. The the
physical relations for the fabric with regard to Eqs. (2.8) can be written as [8, 14]

T11 =
E11e11 + ν21E22e22

1 − ν12ν21
+ ηė11,

T22 =
E22e22 + ν12E11e11

1 − ν12ν21
+ ηė22,

(2.9)

where ν12 = ν21 = 0.25 are analogs of Poisson’s ratio, e11 and e22 are relative elongations, ė11 and ė22

are rates of relative elongations, η is the coefficient of viscous friction in the material, and E11 and E22

are extension elasticity moduli.
We write the physical relation for the ring belt in the form

N22 =
E2e2/Δl + ν12E11e11

1 − ν12ν21
+ ηė2,

where e2 and E2 are the relative elongation and the elasticity modulus for the ring skeleton, and Δl is a
certain reduced width for the consistent deformation of the skeleton and the fabric.

2.2. Determination of the Excess Pressure Necessary for the Full-Stop Braking
Assume that the at the moment of contact of the shell lower part with the surface, the weight velocity

is equal to Vgr, see Fig. 1. The weight energy is equal to the sum of the potential and kinetic energies
E = mgl1 + mV 2

gr/2, where l1 is the cutting height of the shell.

We assume that the entire energy is spent to compress the shell, i.e., to do the work A = P̃ F̃ l1, where
P̃ is the average values of pressure in the compression process, and F̃ is the area of the cross-section of
the deformed shell. Then we have P̃ = (mgl1 = mV 2

gr/2)/(F̃ l1). In the general case, we can assume that
the pressure increases from zero to Pmax at time t̃ and then decreases to zero during the final stage of
compression at time tk; one can assume that the time t̃ corresponds to the final stage of compression. To
determine Pmax from the condition of total absorption of the energy of the falling weight and the profile
of increasing and decreasing pressure, we use the mean value theorem.

According to a special case of the mean value theorem, for a continuous function y = f(x) on the

interval [a, b], we have
b∫

a
f(x) dx, where ỹ(b − a) is the mean value of the function at an intermediate

point on the interval [a, b]. We use this theorem to formulate the following assertion.
For two sinusoidal curves defined on the intervals [a, x̃] and [x̃, b], equal to zero on the boundaries of

the total interval, and equal to ymax = f(x̃) at the common point, independently of the location of the
point x̃ on the interval [a, b], the condition ymax = (π/2)ỹ holds, where ỹ is the mean value of the function
on the interval.

Indeed, if the the ascending and descending parts of the curves are sinusoids, then the area of the
curvilinear trapezoid is given by the integral

I = ymax

x̃∫

a

sin
(

π

2
x − a

x̃ − a

)
dx + ymax

b∫

x̃

cos
(

π

2
x − x̃

b − x̃

)
dx.

For the first integral, we obtain I1 = (2π)ymax(x̃ − a), and for the second, I2 = (2/π)ymax(b − x̃). Thus,
we have I = I1 + I2 = (2/π)ymax(b − a) = ỹ(b − a), the result of integration is independent of the
location of the point x̃ inside the interval [a, b] and ỹ = (2/π)ymax, and hence ymax = (π/2)ỹ.
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Assume that the first phase of the shell compression takes time from t = t0 to t̃, i.e., to the moment
of action of the maximal pressure Pmax, and the second phase takes time from t̃ to tk.

Then we can assume that the law of pressure variation on the ascending and descending parts has
the form

p̃(t) = Pmax sin
(

π

2
t − t0

t̃ − t0

)
, p̃(t) = Pmax cos

(
π

2
t − t̃

tk − t̃

)
. (2.10)

Let us determine the time tk of the end of the shell compression in the first approximation. The mean
value of the pressure in the shell during the compression P̃ implies the mean value of the weight braking
acceleration g̃p = P̃ F̃ /m. In this case, the velocity of the body at the end of the shell compression is equal
to Vgr = V0 + (g − g̃p)(tk − t0), where V0 is the weight velocity at time t = t0. If the shell completely
absorbs the energy of the falling body, then Vgr = 0 and thus tk − t0 = V0/(g̃p − g), where g̃p > g.

In the shell compression, the high-frequency vibrations of the its elements are realized, and the shell
vibrations influence the value of the acting pressure. As a shell element moves against the action of
internal pressure, the pressure acting on this element increases, and if it moves in the opposite direction,
then this pressure decreases, i.e., the inflation is damped by the proper vibrations of the shell.

When solving the problem of the shell compression, the excess pressure p(t) is approximated by the
dependence

p(t) = p̃(t)(1 − νnV n)2 sign(1 − νnV n), (2.11)

which is used in the theory of soft shells to study the parachute dynamics [8]. We introduced the
term νnV n into formula (2.11), where νn is the coefficient of aerodynamic damping of the medium when
a shell moves in it with the velocity V n = ∂u3/∂t in the direction of normal e3 to the surface σ. Here the
component u3 of the displacement vector is calculated by the formula u3 = ue3.

In this dependence, the law of the excess pressure distribution p̃ over the spatial coordinates α1 and α2

is assumed to be given (2.10) at time t.
In what follows, we assume that, for t = t0, the initial shape of the shell is described by the equation

r(α1, α2, t0) = r(α1, α2), where α1 is the curvilinear coordinate along the shell generatrix varying in the
range 0≤α1 ≤ l1, and the circular coordinate α2 varies in the range 0≤α2 ≤ l2. The velocities of the shell
elements at the initial moment are assumed to be equal to the weight velocity dr(α1, α2, t0)/dt = Vgr,
and the velocities of elements in the lower part of the shell at the moment of contact with the surface are
equal to zero, dr(l1, α2, t)/dt.

3. Difference Scheme for Solving the Problem
We consider an element (i, j) of the difference grid on the deformed surface and assume that its mass

is concentrated at the node (i, j).
At each time, we calculate the elongation multiplicities in the directions α1 and α2 by the formulas

λ
i+1/2,j
1 = h−1

1

[ 3∑

k=1

(xγ
i+1,j − xγ

i,j)
2

]1/2

, λ
i,j+1/2
2 = h−1

2

[ 3∑

k=1

(xγ
i,j+1 − xγ

i,j)
2

]1/2

,

λ
i+1/2,j+1/2
1 =

λ
i+1/2,j+1
1 + λ

i+1/2,j
1

2
, λ

i+1/2,j+1/2
2 =

λ
i+1,j+1/2
2 + λ

i,j+1/2
2

2
,

where h1 = h1(i, j) and h2 = h2(i, j) are the distanced between the points (i + 1/2, j), i, j + 1/2,
and (i, j) of the grid.

To calculate the direction cosines of the main basis vectors, we use the relations

{l1,γ}
∣
∣i
j

=
xγ

i+1,j − xγ
i,j

h1λ
i+1/2,j
1

, {l2,γ}
∣
∣j
i

=
xγ

i,j+1 − xγ
i,j

h2λ
i,j+1/2
2

.

The equations of motion (2.2), which admit a generalized representation for the velocity vector compo-
nents (here A and B are constants)

∂V
∂t

− A
∂T
∂s

= B, (3.1)
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are associated with their difference analogs. For example, for

2 ≤ i ≤ n1 − 1, 2 ≤ j ≤ n2 − 1
we have

{V γ}n+1/2 = {V γ}n−1/2 + Pi,j
Δt

h1h2
F γ

i,j

+
Δt

ρh∗

{ ∑

±

1
2h1

[
{T 11λ2}i+1/2

j±1/2{l1γ}i+1/2
j±1/2 − {T 11λ2}i−1/2

j±1/2{l1γ}i−1/2
j±1/2

+ {T 12λ2}j±1/2
i+1/2 {l2γ}j±1/2

i+1/2 − {T 12λ2}j±1/2
i−1/2 {l2γ}j±1/2

i−1/2

]

+
∑

±

1
2h2

[
{T 22λ1}j+1/2

i±1/2 {l2γ}j+1/2
i±1/2 − {T 11λ2}j−1/2

i±1/2 {l1γ}j−1/2
i±1/2

+ {T 21λ1}i±1/2
j+1/2{l2γ}i±1/2

j+1/2 − {T 21λ1}i±1/2
j−1/2{l2γ}i±1/2

j−1/2

]
− ρh∗δ3γg

}
, (3.2)

Here

{l1γ}i+1/2
j−1/2 =

xγ
i+1,g−1/2 − xγ

i,j−1/2

h1λ1
i+1/2,j−1/2

and F γ
i,j is the sum of projections of the areas of eight triangles adjacent to the node (i, j) on the plane

xγ = 0 (γ = 1, 2, 3). So for the first triangle, we have

F 1
i,j =

1
2

[
x2

i,j(x
3
i+1/2,j − x3

i+1/2,j+1/2) + x2
i+1/2,j(x

3
i+1/2,j+1/2 − x3

i,j) + x2
i+1/2,j+1/2(x

3
i,j − x3

i+1/2,j)
]
.

The projections of the area on the other planes x2 = 0 and x3 = 0 are determined similarly. In this
case, the indices 1, 2, 3 are changed by cyclic permutation.

The integration step is chosen according to the Courant–Friedrichs–Lewy criterion

Δt <
αk min(h1, h2)

c
, (3.3)

where αk is the Courant coefficient and c is the speed of small perturbation propagation in the material
(speed of sound).

The boundary conditions for the shell are satisfied on the expanded grid whose dimensions are
determined by the numbers 1, n1 and 1, n2. The indices i and j then vary in the ranges 1 ≤ i ≤ n1

and 1 ≤ j ≤ n2. The sought coordinates of the shell nodes on the time layers are determined by the
formulas

(xγ)n+1
i,j = (xγ)n+1

i,j + Δt(Ṽ γ)n+1/2
i,j (γ = 1, 2, 3). (3.4)

Thus, the construction of the numerical solution of the above-formulated problem is based on the
explicit scheme of the finite difference method. As a result, to construct the solution of the composed
system of equations, we introduce the discrete domain

Sni = nihj, ni = 1, 2, 3, . . . , Si/Δsi, tn = nΔt, n = 1, 2, . . . , t/Δt − 1.

In this case, the values of the desired functions at each step of integration are determined in terms
of the values already known at the preceding step in the framework of the unique algorithm of through
computations.

At the initial time for n = 0 (i.e., for t = −Δt/2), in the equations of the form (3.2), it is first necessary

to introduce (Ṽ γ)−1/2
i,j on the expanded grid. Later, for t > 0, these velocities are recomputed on the

extended grid at each step.
The coefficient η (2.9), which takes into account the influence of the internal friction in the material

on the shell dynamics, the step of integration Δt, and the spacings h1 and h2 of the computational grid
related by the formula (3.3), is chosen by the numerical experiments.

We note that the above-presented algorithm also permits studying the static models of mechanics of
shell deformation by the pseudoviscosity method.
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3.1. Estimation of the Derivative Approximation Error
In Eq. (3.1), we consider the derivative ∂T/∂s with respect to the half-integer grid

si+1/2 =
(

1 +
1
2

)
h, i = 0, 1, 2, . . . ,m − 1, n = 0, 1, 2, . . . ,

for fixed time tn, n = 0, 1, 2, . . . For this, expanding the function T in a Taylor series around an integer
point in [8] and using the results obtained in [20], we show that the central difference in the Lagrangian
coordinate on the half-integer grid approximates the derivative ∂T/∂s up to the second order of accuracy.
Since the values of Δt and Δs are related linearly by (3.3), we have Δt = c1h, where c1 = αk/c, the
derivatives ∂V/∂t can also be calculated. Therefore, the central differences with respect to the half-
integer grid approximate the partial derivative ∂T/∂s and ∂V/∂t in Eq. (3.1) up to the second order of
accuracy.

3.2. Equations of Motion in Dimensionless Form
To represent Eq. (2.2) in dimensionless form, we introduce the following quantities: the characteristic

dimension L = l1 [m] which is the length of the shell generatrix; the pressure difference and the air
density ρB [kg/m2] which are used to determine the characteristic velocity V0 [m/s]; the characteristic
force T0 = ρBV 2

0 L2 [N] and the characteristic mass Ms = 2πrLρ [kg] of the shell; the density ρ of the
shell material; and the Newton parameter AN = ρBV 2

0 L2. The dimensional value of the acceleration g
is expressed in terms of the dimensionless parameter g̃ according to the dependence g = g̃V 2

0 /L, the
change of variables is carried out t = τL/V0, where τ is the dimensionless time, and Tij = T̃ijT0/L,
p = p̃TB/L2, η = η̃T0/V0, and ρ = ρ̃Ms/L

2.

4. ANALYSIS OF THE RESULTS AND EXAMPLES
We assume that the shell has a cylindrical shape of diameter d = 0.5 m and generatrix l1 = 0.6 m.

A regular grid with the respective number of cells 90 × 36 in the the circle and generatrix directions
was used in the calculations. The shell was manufactured of capron fabric with the elasticity moduli
E11 = E22 = 20 kN/m in the the circle and generatrix directions. The fabric density was ρ = 0.05 kg/m2.
The shell was reinforced by three ring belts of five fabric layers located at a uniform spacing along the
shell height. The mass of the falling weight was G=100 kg. The initial velocity of the weight and the shell
at the moment of contact of the cylindrical shell lower part with the surface was set to be Vgr = 6.0 m/s.

The pressure is determined by the dynamic pressure p = kpρBV 2
0 /2, where the characteristic velocity

is V0 = 80 [m/s], the air density is ρB = 0.125g [kg/m3], and the coefficient of the pressure increase
is kp = 4. In the calculations, it was assumed that the value of the pressure difference p in compression
inside the shell remains unchanged.

The initial state corresponding to these data is shown in Fig. 1; the process of weight braking starts
from this moment. Figure 4 illustrates the results of numerical experiment of the process of weight
braking.

The shell maximal deformation in the circular direction occurs at time t = 0.0025 s in the middle of
the shell, and the maximal dimensionless tensions are T22 = 6.099 at this moment. The weight velocity is
equal to Vgr = 6.018 m/s, and the weight height is Hgr = 0.975l1. At time t = 0.052 s, the weight velocity
is equal to Vgr = 5.359 m/s, and the shell is compressed by a half, and the weight height is Hgr = 0.5l1.
At time t = 0.101 s, the weight velocity is equal to Vgr = 4.503 m/s, and the weight height is Hgr = 0.1l1.

Figure 5 presents the graph of surface circular tensions for this time. The maximal dimensionless
tensions T22 = 1.706 are also realized in the middle of the shell. The reinforcement belts significantly
decrease the level of circular tensions.

The total braking time was equal to tk = 0.125 s. And the weight velocity at the moment of contact
with the surface was Vgr = 4.04476 m/s.

Let us test the program by calculations. Assume that the pressure in the shell in compression is
preserved to be p = 0 (free fall of the body). At the initial moment of motion, the weight moves with
velocity Vgr = 6.0 m/s. The time of fall from the height l1 = 0.6 m is determined by the equation
gt2 + 2Vgrt − 2l1 = 0 and is equal to t = 0.09294 s. And the velocity of free fall at the moment of contact
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Fig. 4.

Fig. 5.

with the surface is Vgr = 6.91143 m/s. Let us consider this problem by numerical integration according
to the above algorithm. We obtain Vgr =6.91003 m/s. The relative error compared with the exact solution
is ε = 0.0203%. This calculation was used to choose the Courant coefficient αk = 0.02 in formula (3.3),
which ensures the stability of the solution.

The use of the inflated soft shell allows us in the computational case to decrease the weight velocity
on impact on the surface by ΔV = 6.91143 − 4.04476 = 2.86667 m/s.

In the calculations for a fabric with elasticity moduli E11 = E22 = 18.75 kN/m, the body velocity on
impact on the surface was equal to Vgr = 3.88157 m/s. And the computations for E11 = E22 = 15 kN/m
give the velocity Vgr = 3.76559 m/s.

Thus, decreasing the modulus of elasticity of the material (i.e., using a more deformable materials),
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one can decrease the body velocity on impact on the surface. This effect occurs due to a greater
deformation of the shell and an increase in the effective area of pressure acting against the weight motion.
The velocity of fall also decreases because of an increase in the pressure inside the shell.

5. CONCLUSION
A mathematical model of braking a falling weight by a soft skeleton shell inside which the pressure

acts against the weight motion at the moment of its contact with the surface.
A numerical algorithm for solving partial differential equations with boundary contact conditions for

elements of the soft shell in its compression.
A numerical experiment was carried out to verify the calculation method and the parameters

influencing the process of the body braking were revealed. The results of computations agree well with
the general concepts of braking of a falling weight.
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