

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение

высшего образования

КГЭУ

"КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ" (ФГБОУ ВО «КГЭУ»)

В ЕРЖДАЮ
Проректор по науке и коммерциализации
ОГБОУ ВО «КГЭУ»

И.В. Ившин
20 24 г.

ЗАКЛЮЧЕНИЕ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ" (ФГБОУ ВО «КГЭУ»)

Диссертационная работа «Методика испытаний сетей централизованного теплоснабжения в эксплуатации на фактические потери тепловой энергии» выполнена на кафедре «Экономика и организация производства» ФГБОУ ВО «КГЭУ».

В 2005 году Лапин К.В. окончил ФГБОУ ВО «КГЭУ» по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», диплом №ВСВ 1416488 от 06.07.2005 г. Документ о сдаче кандидатских экзаменов выдан в 2024 году ФГБОУ ВО «КГЭУ».

В период подготовки диссертации соискатель Лапин Константин Викторович являлся аспирантом ФГБОУ ВО «КГЭУ» по направлению подготовки 13.06.01 – «Электро- и теплотехника» (2020 - 2024 гг.).

Научный руководитель – Ирина Гареевна Ахметова, доктор технических наук, заведующая кафедрой «Экономика и организация производства» ФГБОУ ВО «КГЭУ».

Диссертационная работа Лапина Константина Викторовича «Методика испытаний сетей централизованного теплоснабжения в эксплуатации на фактические потери тепловой энергии» обсуждалась на заседании кафедры «Экономика и организация производства» ФГБОУ ВО «КГЭУ» (протокол №10 от «15» мая 2024 г.). По итогам обсуждения диссертационной работы принято следующее заключение.

1. Актуальность темы диссертационной работы

Снижение тепловых потерь напрямую влияет на показатели эффективности транспортировки тепловой энергии. В связи с этим для теплоснабжающих организаций остается актуальным вопрос определения

фактических потерь тепловой энергии в условиях эксплуатации тепловых сетей.

проведения Важным является отсутствие возможности аспектом потери тепловой энергии фактические испытаний теплосети на действующим методикам в отопительный период по причине необходимости прекращения теплоснабжения потребителей. В летний период проведение испытаний возможно В ограниченное время плановых потребителей, но при этом уменьшается время, располагаемое для ремонтов тепловых сетей и источников тепловой энергии. Проведение испытаний требует значительных подготовительных работ, материальных ресурсов.

Имитируемые при испытаниях стационарные параметры тепловой энергии, распределение температуры теплоносителя в циркуляционном кольце не соответствуют реальным параметрам в условиях эксплуатации тепловых сетей в осенне-зимний период. Исходя из постоянных теплофизических изменений в работе системы теплоснабжения, результаты испытаний должны иметь динамический характер для случая нестационарного режима.

Данный вопрос решается путем разработки методики проведения испытаний на фактические потери тепловой энергии в тепловых сетях централизованного теплоснабжения, находящихся в режиме эксплуатации.

2. Научная новизна

- 1. Определен критерий для расчета тепловых потерь через теплоизоляционные конструкции трубопроводов тепловых сетей в нестационарном режиме.
- 2. Определена математическая зависимость изменения тепловых потерь на участке трубопроводов от скорости изменения температуры теплоносителя в теплосети для нестационарного режима работы.
- 3. Разработана и апробирована методика проведения испытаний на фактические потери тепловой энергии тепловых сетей централизованного теплоснабжения, находящихся в нестационарном режиме эксплуатации (в режиме реального времени без ограничения теплоснабжения потребителей).
- 4. Решена задача цифровизации мониторинга потерь тепловой энергии по участкам действующей теплосети.

3. Научная н практическая значимость результатов

Теоретическая значимость работы заключается в том, что параметры тепловой энергии, полученные с использованием средств измерений и системы дистанционной передачи показаний приборов, позволили определить критерий для расчета тепловых потерь через теплоизоляционные конструкции трубопроводов тепловых сетей в нестационарном режиме; позволили разработать методический подход для определения фактических потерь тепловой энергии на участках тепловых сетей с изменяющейся температурой

теплоносителя; разработать методику проведения испытаний на фактические потери тепловой энергии тепловых сетей централизованного теплоснабжения, находящихся в нестационарном режиме эксплуатации (в режиме реального времени без ограничения теплоснабжения потребителей).

Практическая значимость работы.

- 1. Разработана методика проведения испытаний на фактические потери тепловой энергии в тепловых сетях централизованного теплоснабжения, находящихся в режиме эксплуатации, позволяет обеспечить выполнение следующих мероприятий:
- мониторинг сверхнормативных потерь тепловой энергии по участкам действующей теплосети;
- проведение испытаний тепловых сетей на фактические потери тепловой энергии без ограничения теплоснабжения потребителей.

Методика внедрена в теплоснабжающих организациях коммунального комплекса АО «Татэнерго», АО «Казэнерго» (Акты внедрения).

2. Разработан программный продукт на основании предложенных автором алгоритма и методического подхода к определению фактических потерь тепловой энергии в тепловых сетях централизованного теплоснабжения (Свидетельство о регистрации).

4. Личное участие автора в получении результатов научных исследований, изложенных в диссертации

Результаты всех проведенных теоретических и экспериментальных исследований получены лично автором под руководством д.т.н., доцента Ахметовой Ирины Гареевны.

Автором получены, систематизированы фактические и нормативные данные об изменениях параметров тепловой энергии по участкам сетей централизованного теплоснабжения г. Казани. Выполнено сравнение фактических и нормативных данных о параметрах тепловой энергии по участкам тепловых сетей, выявлены факторы, влияющие на потери тепловой энергии в нестационарном режиме теплоснабжения. Выявлена зависимость и построены графики зависимости изменения фактических потерь тепловой энергии от скорости изменения температуры теплоносителя в тепловой сети. Разработана и апробирована методика проведения испытаний на фактические потери тепловой энергии тепловых сетей централизованного теплоснабжения, находящихся в режиме эксплуатации.

Автор принимал участие в обсуждении результатов, написании статей и представлении докладов на конференциях.

5. Степень достоверности результатов проведенных исследований

Достоверность и обоснованность результатов работы обусловлены применением стандартных методик расчетов показателей теплоснабжения с применением современных прикладных программных продуктов и справочных

данных, использованием аттестованной измерительной техники; обусловлены исследованиями фактических параметров тепловой энергии в тепловых сетях с использованием системы дистанционного сбора показаний приборов учета тепловой энергии на источниках теплоты и у потребителей, а также применением нормативных методик расчетов нормативных потерь тепловой энергии и справочных данных о нормах потерь тепловой энергии.

6. Соответствие диссертации научной деятельности

По тематике и методам исследования диссертационная работа соответствует паспорту специальности 2.4.5. — Энергетические системы и комплексы в части пунктов:

- П. 1 «Разработка научных основ (подходов) исследования общих свойств и принципов функционирования и методов расчета, алгоритмов и программ выбора и оптимизации параметров, показателей качества и режимов работы энергетических систем, комплексов, энергетических установок на органическом и альтернативных топливах и возобновляемых видах энергии в целом и их основного и вспомогательного оборудования» (п. 3 научной новизны методика проведения испытаний на фактические потери тепловой энергии тепловых сетей централизованного теплоснабжения, находящихся в нестационарном режиме эксплуатации»;
- П. 2 «Математическое моделирование, численные и натурные исследования физико-химических и рабочих процессов, протекающих в энергетических системах и установках на органическом и альтернативных топливах и возобновляемых видах энергии, их основном и вспомогательном оборудовании и общем технологическом цикле производства электрической и тепловой энергии» (п.п.1,2 научной новизны определен критерий для расчета тепловых потерь через теплоизоляционные конструкции трубопроводов тепловых сетей в нестационарном режиме; определена математическая зависимость изменения тепловых потерь на участке трубопроводов от скорости изменения температуры теплоносителя в теплосети для нестационарного режима работы);
- П. 5 «Разработки и исследования в области энергосбережения и ресурсосбережения при производстве тепловой и электрической энергии, при транспортировке тепловой, электрической энергии и энергоносителей в энергетических системах и комплексах» (п.4 научной новизны решена задача цифровизации мониторинга потерь тепловой энергии по участкам действующей теплосети).

7. Полнота изложений результатов диссертации в работах, опубликованных автором

По результатам диссертационного исследования опубликовано 11 работ, в том числе 3 статьи в рецензируемых журналах, входящих в перечень ВАК

Минобрнауки России, 2 статьи в изданиях, индексируемых в международных базах данных цитирования Scopus.

Статьи в рецензируемых научных изданиях, входящих в перечень $BAKP\Phi$:

- 1. Лапин, К.В. Применение современных информационных технологий учета тепловой энергии для оперативного поиска мест увлажнения тепловой изоляции / И.Г. Ахметова, К.В. Лапин, Т.Р. Ахметов, Е.Ю. Бальзамова // Теплоэнергетика. 2021. № 5. С. 89–96 (общий объем 8 с., личный вклад 3 с.).
- 2. Лапин, К.В. Исследование нестационарных процессов теплообмена в тепловых сетях централизованного теплоснабжения / И.Г. Ахметова, К.В. Лапин // Вестник Казанского государственного энергетического университета. 2022. Том 14. № 3. С. 13-26 (общий объем 14 с., личный вклад 8 с.).
- 3. Лапин, К.В. Оптимальная периодичность изменения температуры теплоносителя на источнике теплоты и влияние скорости её изменения на потери тепловой энергии / И.Г. Ахметова, К.В. Лапин // Известия высших учебных заведений. Проблемы энергетики. 2023. 25(3). С. 139-149 (общий объем 11 с., личный вклад 7 с.).

Статьи в рецензируемых научных изданиях, индексируемых в международной базе данных SCOPUS

- 4. Lapin, K.V. Improving of the heat supply energy efficiency in Russian cities through the individual heat points introduction / N.D. Chichirova, I.G. Akhmetova, A.R Gilmanova, K.V. Lapin, I.O.N. Ion // В сборнике: E3S Web of Conferences. 2019 International Scientific and Technical Conference Smart Energy Systems, SES 2019. C. 04009 (общий объем 4 с., личный вклад 1 с.).
- 5. Lapin, K.V. Digitalization of heat energy accounting as a means of improving the reliability of heat supply / I.G. Akhmetova, E.Y. Balsamova, K.V. Lapin, T.R. Akhmetov // В сборнике: E3S Web of Conferences. Rudenko International Conference "Methodological problems in reliability study of large energy systems" (RSES 2019). 2019. С. 01011. (общий объем 5 с., личный вклад 2 с.).

Публикации в других научных изданиях

- 6. Лапин, К.В. Цифровизация учета тепловой энергии как средство повышения надежности теплоснабжения / И.Г. Ахметова, К.В. Лапин, Т.Р. Ахметов, Е.Ю. Бальзамова // 91-е заседание Международного научного семинара им. Ю.Н. Руденко «Методические вопросы исследования надежности больших систем энергетики»: сборник трудов. Ташкент, 2019. С. 125-134 (общий объем 10 с., личный вклад 4 с.).
- 7. Лапин, К.В. Цифровые технологии мониторинга качества поставляемой тепловой энергии потребителям / И.Г. Ахметова, К.В. Лапин, Т.Р. Ахметов, Е.Ю. Бальзамова // 92- е заседание Международного научного семинара им. Ю.Н. Руденко «Методические вопросы исследования надежности больших систем энергетики»: сборник материалов. Казань, 2020. С. 39-47 (общий объем 9 с., личный вклад 4 с.).
- 8. Лапин, К.В. Выбор оптимального типа теплоизоляционной конструкции на основе нейросетевого моделирования / И.Г. Ахметова, Е.Ю. Бальзамова, В.В. Бронская, Д.С. Бальзамов, К.В. Лапин, О.С. Харитонова // 92-е заседание семинара учрежденного при ИСЭМ СО РАН «Методические вопросы

исследования надежности больших систем энергетики»: сборник трудов. Казань, 2020. С. 186-190 (общий объем – 5 с., личный вклад – 1 с.).

9. Лапин, К.В. Использование средств измерений температуры теплоносителя для поиска мест затопления трубопроводов теплосети // Международная молодежная научная конференция «Тинчуринские чтения — 2022 «Энергетика и цифровая трансформация»: сборник статей. Казань, 2022. Том 2. С. 151-155 (общий объем — 6 с., личный вклад — 6 с.).

Свидетельства о государственной регистрации программы для ЭВМ 10.Запольская И.Н., Лапин К.В., Вовченко И.Г. Модуль мониторинга качества теплоснабжения потребителей // Регистрационный номер № 2023662329. 2023.

11.Ваньков Ю.В., Запольская И.Н., Лапин К.В., Шаповалов С.К., Измайлова Е.В. Transition2ITP // Регистрационный номер № 2021680212. 2021.

8. Апробация работ

Основные положения работы, результаты теоретических и расчетных исследований обсуждались на 91-м и 92-м заседаниях Международного научного семинара им. Ю.Н. Руденко «Методические вопросы исследования надежности больших систем энергетики» (Узбекистан, г. Ташкент, 2019 г., Россия, г. Казань, 2020 г.); 92-м научном заседании «Надежность энергоснабжения потребителей в условиях их цифровизации» (Россия, г. Казань, 2020 г.); на Международной молодежной научной конференции «Тинчуринские чтения — 2022 «Энергетика и цифровая трансформация» (Россия, г. Казань, 2022 г.) и др.

9. Ценность научных работ соискателя

Ценность научных работ соискателя состоит в проведении исследований, по результатам которых разработан методический подход для определения фактических потерь тепловой энергии на участках тепловых сетей с изменяющейся температурой теплоносителя.

По результатам проведенных исследований разработана методика проведения испытаний на фактические потери тепловой энергии тепловых сетей централизованного теплоснабжения, позволяющая проводить испытания в условиях эксплуатации тепловых сетей.

10. Характер результатов

Характер результатов диссертации соответствует п. 9 Положения о присуждении ученых степеней ВАК Министерства образования и науки РФ.

11.Выводы

Диссертация «Методика испытаний сетей централизованного теплоснабжения в эксплуатации на фактические потери тепловой энергии» является завершенной научно-квалификационной работой, выполненной на актуальную тему, в которой содержится решение задач, связанных с испытаниями тепловых сетей на фактические тепловые потери.

Полученные результаты направлены на методологическое обеспечение проведения испытаний на фактические потери тепловой энергии тепловых сетей централизованного теплоснабжения в условиях их эксплуатации и могут быть использованы на предприятиях энергетической отрасли, для повышения эффективности транспорта тепловой энергии по сетям.

Диссертация обобщает самостоятельные исследования автора, обладает внутренним единством, содержит новые научные результаты и положения, выдвигаемые на защиту, свидетельствует о личном вкладе автора в науку.

Работа соответствует критериям Положения о присуждении ученых степеней, принятого Постановлением Правительства Российской Федерации от 24 сентября 2013 г.№842, с изменениями, принятыми Постановлением Правительства РФ от 25.01.2024 №62, предъявляемым к диссертациям на соискание ученой степени кандидата наук, включая требования п.14.

Диссертация «Методика испытаний сетей централизованного теплоснабжения в эксплуатации на фактические потери тепловой энергии» Лапина Константина Викторовича рекомендуется к защите на соискание ученой степени кандидата технических наук по специальности 2.4.5 - Энергетические системы и комплексы.

Заключение принято на заседании кафедры «Экономика и организация производства» ФГБОУ ВО «КГЭУ». Присутствовало на заседании 10 чел. Результаты голосования: «за» - 10 чел., «против» - 0 чел., «воздержалось» - 0 чел., протокол Nole 10 от «15» мая 2024 г.

Председатель заседания: Лившиц Семен Александрович, к.т.н., доцент, зам. зав. кафедрой «Экономика и организация производства» ФГБОУ ВО «КГЭУ»

- Hos

Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет», 420066, Республика Татарстан, г. Казань, ул. Красносельская, 51. Тел. +7 (843) 519-42-88. +7 (843) 519-42-89, e-mail: eop100@mail.ru.

Сведения о лице, утвердившем заключение

Ившин Игорь Владимирович: доктор технических наук, профессор Федеральное государственное учреждение высшего образования «Казанский государственный энергетический университет», проректор по науке и коммерциализации

4200066 Республика Татарстан, г. Казань, ул. Красносельская, 51.

Тел.(843)519-43-72, e-mail: ivshin.iv@kgeu.ru